Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces

verfasst von: Yongmin Liu, Yanyan Yu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(H(\mathbb{D})\) denote the space of all analytic functions on the unit disc \(\mathbb{D}\) of the complex plane ℂ, \(\psi_{1},\psi_{2}\in H(\mathbb{D}) \), and φ be an analytic self-map of \(\mathbb{D}\). In this paper, we characterize the boundedness and compactness of a Stević-Sharma operator \(T _{\psi_{1},\psi_{2},\varphi}\) from Hardy spaces \(H^{p}\) (with \(1\leq p<\infty\)) to the logarithmic Bloch spaces \(\mathcal{B}_{\mathrm{log}}\).
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. They also read and approved the final manuscript.

1 Introduction

We begin with a brief review of relevant concepts and results in one complex variable. Let \(\mathbb{D}=\{z\in\mathbb{C}: |z|<1\}\) be the open unit disc in the complex plane ℂ, \(H(\mathbb{D})\) the class of all analytic functions on the unit disc.
For \(0\leq r<1\), \(f\in H(\mathbb{D})\), we set
$$\begin{aligned}& M_{p}(f,r)= \biggl(\frac{1}{2\pi}\int_{0}^{2\pi} \bigl\vert f\bigl(re^{i\theta}\bigr) \bigr\vert ^{p}\, { \mathrm{d}}\theta \biggr)^{1/p},\quad 0 < p < \infty, \\& M_{\infty}(f,r)=\max_{0\leq\theta \leq2\pi}\bigl\vert f \bigl(re^{i\theta}\bigr)\bigr\vert . \end{aligned}$$
For \(0 < p < \infty\), the classical Hardy space \(H^{p}\) is the space of all analytic functions f on the unit disk \(\mathbb{D}\) such that
$$ \|f\|_{H^{p}}=\sup_{0< r<1}M_{p}(f, r)<\infty. $$
(1.1)
It is well known that with the norm (1.1) the \(H^{p}\) space is a Banach space if \(1\leq p<\infty\), for \(0< p<1\), \(H^{p}\) space is a nonlocally convex topological vector space, and \(d(f, g)=\|f-g\|_{H^{p}}^{p}\) is a complete metric for it. Let \(H^{\infty}\) denote the space of all \(f\in H(\mathbb{D})\) for which \(\|f\|_{\infty}= \sup_{z\in\mathbb{D}} |f(z)| <\infty\). For more information about the \(H^{p}\) space, one may see, for example, [1, 2].
The logarithmic Bloch space is defined as follows [3, 4]:
$${\mathcal{B}}_{\mathrm{log}}=\biggl\{ f\in H({\mathbb{D}}): \|f\|=\sup _{z\in \mathbb{D}} \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|} \bigl\vert f'(z)\bigr\vert <\infty\biggr\} . $$
The space \({\mathcal{B}}_{\mathrm{log}}\) is a Banach space under the norm \(\|f\|_{{\mathcal{B}}_{\mathrm{log}}}=|f(0)|+\|f\|\). Let \({\mathcal{B}}_{\mathrm{log},0}\) denote the subspace of \({\mathcal{B}}_{\mathrm{log}}\) consisting of those \(f\in{\mathcal{B}}_{\mathrm{log}}\) such that
$$\lim_{|z|\rightarrow 1}\bigl(1-|z|^{2}\bigr)\log\frac{2}{1-|z|} \bigl\vert f'(z)\bigr\vert =0. $$
It is obvious that there are unbounded \({\mathcal{B}}_{\mathrm{log}}\) functions. For example, consider the function \(f(z) = \log\log\frac{e}{1-z}\). There are also bounded function that they do not belong to \({\mathcal{B}}_{\mathrm{log}}\). Particularly consider the inner function \(S(z)=e^{\gamma\frac{z+\eta}{z-\eta}}\), where \(\gamma\in(0,1)\) and \(\eta\in\partial\mathbb{D}\). Then
$$\bigl\vert S'(z)\bigr\vert \bigl(1-|z|^{2}\bigr)\log \frac{2}{1-|z|}=2\gamma e^{-\gamma\frac {1-|z|^{2}}{|z-\eta|^{2}}} e^{\frac{2\gamma \operatorname{Re}(\overline{z}\eta)}{|z-\eta|^{2}}}\frac {1-|z|^{2}}{|z-\eta|^{2}}\log \frac{2}{1-|z|}. $$
If let \(z\rightarrow\eta\) on the horocycle \(\frac{1-|z|^{2}}{|z-\eta|^{2}}=c\), we get \(S\notin{\mathcal{B}}_{\mathrm{log}}\). Actually this is not the only bounded function which does not belong to \({\mathcal{B}}_{\mathrm{log}}\). Consider an interpolating Blaschke product. That is a product \(\prod_{k\geq 1}\frac{z_{k}-z}{1-\overline{z}_{k}z}:=B(z)\), where \(\{z_{k}\}\subset\mathbb {D}\) such that \(\sum_{k\geq1} (1-|z_{k}| )<\infty\) and satisfies the following property. There exists \(\delta\in(0,1)\) such that \(\prod_{k\neq j }\vert \frac{z_{k}-z_{j}}{1-\overline{z}_{k}z_{j}}\vert \geq\delta\), for each \(j\in\{1,2, \ldots\}\). Then we observe that for each j,
$$\bigl\vert B'(z_{j})\bigr\vert \bigl(1-|z_{j}|^{2} \bigr)\log\frac{2}{1-|z_{j}|}=\prod_{k\neq j }\biggl\vert \frac{z_{k}-z_{j}}{1-\overline{z}_{k}z_{j}}\biggr\vert \log\frac{2}{1-|z_{j}|}\geq\delta\log \frac{2}{1-|z_{j}|}. $$
So, it is obvious that the interpolating Blaschke products do not belong to \({\mathcal{B}}_{\mathrm{log}}\) but to \(H^{\infty}\) [5, Theorem 15.21]. It is easily proved that for \(0<\alpha<1\), \({\mathcal{B}}^{\alpha}_{0}\subsetneqq{\mathcal{B}}_{\mathrm{log},0}\subsetneqq {\mathcal{B}}_{0}\) and \({\mathcal{B}}^{\alpha}\subsetneqq{\mathcal{B}}_{\mathrm{log}}\subsetneqq{\mathcal{B}}\), here \(\mathcal{B}^{\alpha}_{0}\) is the little α-Bloch space and \(\mathcal{B}^{\alpha}\) is the α-Bloch space.
The space \({\mathcal{B}}_{\mathrm{log}}\) arises in connection to the study of certain operators with symbol. Arazy in [6] proved that the multiplication operator \(M_{\psi}\) is bounded on the Bloch space if and only if \(\psi\in H^{\infty}\cap {\mathcal{B}}_{\mathrm{log}}\). In [7], Brown and Shields extended this result to the little Bloch space. Li and Stević in [8, Theorem 2.5] proved that \(I_{g}:\mathcal{Z}\rightarrow \mathcal{Z}\) is bounded if and only if \(g\in H^{\infty}\cap {\mathcal{B}}_{\mathrm{log}}\), here \(I_{g}f(z)=\int_{0}^{z}f'(\xi)g(\xi)\, {\mathrm{d}}\xi\).
The space \({\mathcal{B}}_{\mathrm{log}}\) appeared in the study of the boundedness of the Hankel operators on the Bergman space. Attele in [9] proved that for \(f\in L^{2}_{a}(\mathbb{D})\), the Hankel operator \(H_{f}: L^{1}_{a}(\mathbb{D})\rightarrow L^{1}(\mathbb{D})\) is bounded if and only if \(\|f\|_{{\mathcal{B}}_{\mathrm{log}}}<\infty\), thus giving one reason, and not the only reason, why log-Bloch-type spaces are of interest. Ye in [3] proved that \({\mathcal{B}}_{\mathrm{log},0}\) is a closed subspace of \({\mathcal{B}}_{\mathrm{log}}\). For some recent papers on some operators on \({\mathcal{B}}_{\mathrm{log}}\), see, for example, [4, 1018].
The composition, multiplication, and differentiation operator on \(H(\mathbb{D})\) are defined as follows:
$$\begin{aligned}& (C_{\varphi}f) (z)=(f\circ\varphi) (z)=f\bigl(\varphi(z)\bigr),\quad z\in \mathbb{D}; \\& (M_{\psi}f) (z)=\psi(z)f(z),\quad z\in\mathbb{D}; \\& D f(z)=f'(z), \quad z\in\mathbb{D}. \end{aligned}$$
The differentiation operator is typically unbounded on many analytic function spaces. For \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), let
$$T_{\psi_{1}, \psi_{2},\varphi}f(z)=\psi_{1}(z)f\bigl(\varphi(z)\bigr)+\psi _{2}(z)f'\bigl(\varphi(z)\bigr), \quad f\in H(\mathbb{D}). $$
The operator \(T_{\psi_{1}, \psi_{2},\varphi}\) was studied by Stević and co-workers for the first time in [19, 20], also see [21]. This operator is related to the various products of multiplication, composition, and differentiation operators. It is clear that all products of composition, multiplication, and differentiation operator in the following six ways can be obtained from the operator \(T_{\psi_{1}, \psi_{2}, \varphi}\) by fixing \(\psi_{1}\), \(\psi_{2}\). More specifically we have
$$\begin{aligned}& M_{\psi}C_{\varphi}D=T_{0, \psi, \varphi};\qquad M_{\psi}D C_{\varphi}= T_{0, \psi\varphi', \varphi};\qquad C_{\varphi}M_{\psi}D=T_{0, \psi\circ\varphi, \varphi}; \\& D M_{\psi}C_{\varphi}=T_{\psi',\psi\varphi, \varphi};\qquad C_{\varphi}D M_{\psi}=T_{\psi'\circ\varphi,\psi\varphi, \varphi};\qquad DC_{\varphi}M_{\psi}=T_{\psi'\circ\varphi\varphi', (\psi\circ\varphi )\varphi', \varphi}. \end{aligned}$$
Product-type operators on some spaces of analytic functions on the unit disk have been the object of study for several recent years (see, for example, [2238] and also related references therein). Ohno in [39] devoted most of the paper to finding necessary and sufficient conditions for \(C_{\varphi}D\) to be bounded as well as for \(C_{\varphi}D\) to be compact on the Hardy space \(H^{2}\). The operator \(DC_{\varphi}\) was studied for the first time in [40], where the boundedness and compactness of \(DC_{\varphi}\) between Bergman and Hardy spaces are investigated. Li and Stević in [23, 27, 28, 41] studied the boundedness and compactness of the operator \(DC_{\varphi}\) between Bloch-type spaces, weighted Bergman spaces \(A^{p}_{\alpha}\) and \(\mathcal {B}^{\alpha}\), mixed-norm space and \(\mathcal{B}^{\alpha}\) as well as the space of bounded analytic functions and the Bloch-type space. Liu and Yu in [31] studied the boundedness and compactness of the operator \(DC_{\varphi}\) from \(H^{\infty}\) and Bloch spaces to Zygmund spaces. Yang in [42] studied the same problems for operators \(C_{\varphi}D\) and \(DC_{\varphi}\) from \(Q_{K}(p, q)\) space to \(\mathcal {B}_{\mu}\) and \(\mathcal{B}_{\mu,0}\). Stević in [35] studied the boundedness and compactness of the products of differentiation and multiplication operators \(DM_{\psi}\) from mixed-norm spaces to weighted-type spaces. Liu and Yu in [30] studied the operators \(DM_{\psi}\) from \(H^{\infty}_{\mu}\) to Zygmund spaces. Yu and Liu in [43] investigated the same problems for operators \(DM_{\psi}\) from mixed-norm spaces to Bloch-type spaces. Zhu in [44] completely characterized the boundedness and compactness of linear operators which are obtained by taking products of differentiation, composition and multiplication operators, and which act from Bergman-type spaces to Bers spaces. Kumar and Singh in [45] investigated the same problem for operators \(DC_{\varphi}M_{\psi}\) acting on \(A^{p}_{\alpha}\) and used the Carleson-type conditions. They also found the essential norm estimates of \(M_{\psi}DC_{\varphi}\) in the spirit of the work by Čučkovič and Zhao in [46]. Liang and Zhou in [47] investigated boundedness and compactness of the operators \(C_{\varphi}D^{m}\) between \(\mathcal{B}^{\alpha}\) and \(\mathcal{B}^{\beta}\) and formulas for the essential norms were derived. Liang and Zhou in [48] found a new estimate of essential norm of composition followed by differentiation between Bloch-type spaces. Ye in [49] estimated the norm and the essential norm of composition followed by differentiation from logarithmic Bloch spaces to \(H^{\infty}\). Hyvärinen and Nieminen in [50] investigated the behavior of \(DuC_{\varphi}:\mathcal {B}^{\alpha}\rightarrow\mathcal{B}^{\beta}\), that is, the product of a weighted composition operator \(uC_{\varphi}\) and the differentiation operator D, between Bloch-type spaces with standard weights. Further information on some related product-type operators on spaces of holomorphic functions on the unit ball are treated, for example, in [5162].
Inspired by the above results, the purpose of the paper is to study the boundedness and compactness of the operator \(T_{\psi_{1}, \psi_{2},\varphi}\) from Hardy spaces \(H^{p}\) (with \(1\leq p<\infty\)) to the logarithmic Bloch spaces \({\mathcal{B}}_{\mathrm{log}}\). Throughout the paper, the letter C denotes a positive constant which may vary at each occurrence, but it is independent of the essential variables.
The paper is organized as follows. Section 2 contains lemmas needed to prove Theorem 3.1, Corollary 3.2, Corollary 3.3, Theorem 3.4, Corollary 3.5, Corollary 3.6, Theorem 4.1, Corollary 4.2, Corollary 4.3, Theorem 4.4, Corollary 4.5, and Corollary 4.6. Section 3 considers the boundedness of the operator \(T_{\psi_{1}, \psi _{2}, \varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}} (\mathcal{B}_{\mathrm{log},0})\). Section 4 considers the compactness of the operator \(T_{\psi_{1}, \psi _{2}, \varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}(\mathcal{B}_{\mathrm{log},0})\).

2 Auxiliary results

For a better understanding, in this section we list up the following four auxiliary results that are needed to prove our main results. The following lemma is folklore (see, e.g., [1, 2]).
Lemma 2.1
Assume that \(p \in(0, \infty)\) and \(f\in H^{p}\). Then for each \(n\in\mathbb{N}_{0}\), there is a positive constant C independent of f such that
$$\bigl\vert f^{(n)}(z)\bigr\vert \leq\frac{C\|f\|_{H^{p}}}{(1-|z|^{2})^{n+1/p}},\quad z\in \mathbb{D}. $$
The following lemma in [1, p.65] plays an important role in characterizing the boundedness and the compactness of the operators under consideration in this paper.
Lemma 2.2
Assume that \(p>1\), Then there is a positive constant \(C(p)\) independent of f such that
$$\int_{0}^{2\pi}\frac{{\mathrm{d}}\theta}{|1-z|^{p}}\leq \frac {C(p)}{(1-|z|^{2})^{p-1}}, \quad z\in\mathbb{D}. $$
The following criterion for the compactness follows by standard arguments (see, e.g., the proofs of the corresponding lemmas in [63, Proposition 3.11] or [64, Lemma 2.10]). The details will not be pursued here.
Lemma 2.3
Let \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), φ denotes an analytic self-map of \(\mathbb{D}\). Then \(T_{\psi_{1}, \psi_{2}, \varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is compact if and only if \(T_{\psi_{1}, \psi_{2}, \varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is bounded and for every bounded sequence \(\{f_{n}\}\) in \(H^{p}\) which converges to zero uniformly on compact subsets of \(\mathbb{D}\) as \(n\rightarrow\infty\), we have \(\|T_{\psi_{1}, \psi_{2}, \varphi}f_{n}\|_{\mathcal{B}_{\mathrm{log}}}\rightarrow0\) as \(n\rightarrow \infty\).
The following lemma can be proved similar to Lemma 1 in [65] (see, also [66]). The details are omitted.
Lemma 2.4
A closed set K in \(\mathcal{B}_{\mathrm{log},0}\) is compact if and only if it is bounded and satisfies
$$\lim_{|z|\rightarrow1}\sup_{f\in K} \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert f'(z)\bigr\vert =0. $$

3 The boundedness of the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p} \rightarrow\mathcal{B}_{\mathrm{log}}(\mathcal {B}_{\mathrm{log},0})\)

First we consider the boundedness of the operator \(T _{\psi_{1},\psi _{2},\varphi}:H^{p} \rightarrow\mathcal{B}_{\mathrm{log}}\).
Theorem 3.1
Let \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\). Then the following statements are equivalent.
(a)
\(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is bounded;
 
(b)
$$\begin{aligned}& \sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi_{1}'(z)|}{(1-|\varphi(z)|^{2})^{1/p}}<\infty, \end{aligned}$$
(3.1)
$$\begin{aligned}& \sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \vert }{(1-|\varphi(z)|^{2})^{1+1/p}}<\infty \end{aligned}$$
(3.2)
and
$$ \sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi_{2}(z)\varphi'(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}<\infty. $$
(3.3)
 
Proof
(b) ⇒ (a). First assume that (3.1), (3.2), and (3.3) hold. Then for every \(z\in\mathbb{D}\), \(f\in H^{p}\), by Lemmas 2.1 and 2.2, we have
$$\begin{aligned}& \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f )'(z)\bigr\vert \\ & \quad = \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)f\bigl(\varphi (z)\bigr) \\ & \qquad {}+ \bigl(\psi_{1}(z)\varphi'(z)+ \psi_{2}'(z) \bigr)f'\bigl(\varphi(z)\bigr)+ \psi _{2}(z)\varphi'(z)f''\bigl( \varphi(z)\bigr)\bigr\vert \\ & \quad \leq \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert \bigl\vert f\bigl(\varphi (z) \bigr)\bigr\vert \\ & \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+\psi _{2}'(z) \bigr\vert \bigl\vert f'\bigl(\varphi(z)\bigr)\bigr\vert \\ & \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi '(z)f''\bigl( \varphi(z)\bigr)\bigr\vert \\ & \quad \leq C\|f\|_{H^{p}}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi _{1}'(z)|}{(1-|\varphi(z)|^{2})^{1/p}} +C\|f\|_{H^{p}}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|} \vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z)\vert }{(1-|\varphi (z)|^{2})^{1+1/p}} \\ & \qquad {} +C\|f\|_{H^{p}}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi _{2}(z)\varphi'(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}} \\ & \quad \leq C\|f\|_{H^{p}}. \end{aligned}$$
(3.4)
On the other hand, by Lemma 2.1 we have
$$\begin{aligned} \bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f ) (0)\bigr\vert =&\bigl\vert \psi _{1}(0)f\bigl(\varphi(0)\bigr) + \psi_{2}(0)f' \bigl(\varphi(0)\bigr)\bigr\vert \\ \leq& C \biggl(\frac{|\psi_{1}(0)|}{(1-|\varphi(0)|^{2})^{1/p}} + \frac {|\psi_{2}(0)|}{(1-|\varphi(0)|^{2})^{1+1/p}} \biggr)\|f \|_{H^{p}}. \end{aligned}$$
(3.5)
Applying conditions (3.4) and (3.5), we deduce that the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is bounded.
(a) ⇒ (b). Now assume that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}} \) is bounded. That means that there exists a constant C such that
$$\|T _{\psi_{1},\psi_{2},\varphi}f\|_{\mathcal{B}_{\mathrm{log}}}\leq C\|f\|_{H^{p}}, $$
for all \(f\in H^{p}\). For \(f(z)=1 \in H^{p}\), we have
$$ K_{1}:=\sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log\frac {2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert <\infty. $$
(3.6)
For \(f(z)=z \in H^{p}\), we have
$$ \sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|} \bigl\vert \psi_{1}'(z)\varphi(z)+ \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \bigr\vert <\infty. $$
(3.7)
By (3.6), (3.7), the triangle inequality, and the fact that \(\|\varphi\|_{\infty}\leq1\), we obtain
$$ K_{2}:=\sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|} \bigl\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \bigr\vert <\infty. $$
(3.8)
For \(f(z)=z^{2} \in H^{p}\), we get
$$\begin{aligned}& \sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|}\bigl\vert \psi _{1}'(z) \bigl( \varphi(z)\bigr)^{2} \\& \quad {}+2 \bigl(\psi_{1}(z)\varphi'(z)+ \psi_{2}'(z) \bigr)\varphi(z)+2\psi _{2}(z) \varphi'(z)\bigr\vert <\infty. \end{aligned}$$
(3.9)
From (3.6), (3.8), (3.9), the triangle inequality, and the boundedness of the function \(\varphi(z)\), we have
$$ K_{3}:=\sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log\frac {2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert <\infty. $$
(3.10)
For a fixed \(w\in\mathbb{D}\) and constants a, b, we consider the following test functions:
$$ f_{w}(z) =\frac{a(1-|w|^{2})}{(1-\overline{w}z)^{1+1/p}}-\frac {(1-|w|^{2})^{2}}{(1-\overline{w}z)^{2+1/p}}+ \frac {b(1-|w|^{2})^{3}}{(1-\overline{w}z)^{3+1/p}}. $$
(3.11)
By the elementary inequality \((s+t)^{p}\leq C(s^{p}+t^{p})\) (\(s>0\), \(t>0\)) and Lemma 2.2, one has
$$\begin{aligned} M_{p}^{p}(f_{w},r) =&\frac{1}{2\pi}\int _{0}^{2\pi}\bigl\vert f_{w} \bigl(re^{i\theta }\bigr)\bigr\vert ^{p} \, {\mathrm{d}}\theta \\ \leq& C\int_{0}^{2\pi} \biggl(\frac{|a|^{p}(1-|w|^{2})^{p}}{|1-\overline {w}re^{i\theta}|^{1+p}} + \frac{(1-|w|^{2})^{2p}}{|1-\overline{w}re^{i\theta}|^{1+2p}}+\frac {|b|^{p}(1-|w|^{2})^{3p}}{|1-\overline{w}re^{i\theta}|^{1+3p}} \biggr)\, {\mathrm{d}}\theta \\ \leq& C \biggl(\frac{|a|^{p}(1-|w|^{2})^{p}}{(1-|w|r)^{p}}+\frac {(1-|w|^{2})^{2p}}{(1-|w|r)^{2p}}+\frac {|b|^{p}(1-|w|^{2})^{3p}}{(1-|w|r)^{3p}} \biggr), \end{aligned}$$
hence \(f_{w}\in H^{p}\) and
$$ \sup_{w\in\mathbb{D}}\|f_{w}\|_{H^{p}} \leq C. $$
(3.12)
A straightforward calculation shows that
$$ f'_{w}(z)=\overline{w} \biggl( \frac{aA_{1,p}(1-|w|^{2})}{(1-\overline {w}z)^{2+1/p}}-\frac{A_{2,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{3+1/p}} +\frac{bA_{3,p}(1-|w|^{2})^{3}}{(1-\overline{w}z)^{4+1/p}} \biggr) $$
(3.13)
and
$$\begin{aligned} f''_{w}(z) =&( \overline{w})^{2} \biggl(\frac {aA_{1,p}A_{2,p}(1-|w|^{2})}{(1-\overline{w}z)^{3+1/p}}-\frac {A_{2,p}A_{3,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{4+1/p}} \biggr) \\ &{}+(\overline{w})^{2} \biggl(\frac{bA_{3,p}A_{4,p}(1-|w|^{2})^{3}}{(1-\overline {w}z)^{5+1/p}} \biggr), \end{aligned}$$
(3.14)
where \(A_{j,p}=j+1/p\), \(j=1,2,3,4\).
If taking \(a=\frac{A_{2,p}}{2A_{1,p}}\), \(b=\frac{A_{2,p}}{2A_{3,p}}\) in (3.11), then we have \(f_{w}'(w)=f_{w}''(w)=0\),
$$f_{w}(w)=\frac{C_{1}(p)}{ (1-\vert w\vert ^{2} )^{1/p}}, $$
where \(C_{1}(p)=a+b-1\neq0\). Thus for \(w\in\mathbb{D}\), we have
$$\begin{aligned}& C\geq \Vert T_{\psi_{1},\psi_{2},\varphi}f_{\varphi(w)}\Vert _{H^{p}} \\& \quad \geq\sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|} \bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{\varphi(w)})'(z) \bigr\vert \\& \quad =\sup_{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)f_{\varphi(w)} \bigl(\varphi(z)\bigr)+ \bigl(\psi_{1}(z)\varphi'(z)+\psi _{2}'(z) \bigr)f'_{w}\bigl( \varphi(z)\bigr) \\& \qquad {}+\psi_{2}(z)\varphi'(z)f''_{\varphi(w)} \bigl(\varphi(z)\bigr)\bigr\vert \\& \quad \geq\bigl(1-|w|^{2}\bigr) \biggl(\log\frac{2}{1-|w|} \biggr) \bigl\vert \psi_{1}'(w)f_{\varphi (w)}\bigl(\varphi(w) \bigr)+ \bigl(\psi_{1}(w)\varphi'(w)+\psi_{2}'(w) \bigr)f'_{\varphi (w)}\bigl(\varphi(w)\bigr) \\& \qquad {}+\psi_{2}(w)\varphi'(w)f''_{\varphi(w)} \bigl(\varphi(w)\bigr)\bigr\vert \\& \quad =\frac{|C_{1}(p)| (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi_{1}'(w)|}{ (1-\vert \varphi(w)\vert ^{2} )^{1/p}}, \end{aligned}$$
(3.15)
from which we get (3.1).
For a fixed \(w\in\mathbb{D}\), set
$$ g_{w}(z)=-\frac{(1-|w|^{2})}{(1-\overline{w}z)^{1+1/p}}+\frac {c(1-|w|^{2})^{2}}{(1-\overline{w}z)^{2+1/p}}+ \frac {d(1-|w|^{2})^{3}}{(1-\overline{w}z)^{3+1/p}}. $$
(3.16)
It is easy to see that
$$\begin{aligned}& g'_{w}(z)=\overline{w} \biggl( \frac{-A_{1,p}(1-|w|^{2})}{(1-\overline {w}z)^{2+1/p}}+\frac{cA_{2,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{3+1/p}} +\frac{dA_{3,p}(1-|w|^{2})^{3}}{(1-\overline{w}z)^{4+1/p}} \biggr), \end{aligned}$$
(3.17)
$$\begin{aligned}& g''_{w}(z)=( \overline{w})^{2} \biggl(\frac {-A_{1,p}A_{2,p}(1-|w|^{2})}{(1-\overline{w}z)^{3+1/p}}+\frac {cA_{2,p}A_{3,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{4+1/p}} \biggr) \\& \hphantom{g''_{w}(z)=}{}+(\overline{w})^{2} \biggl(\frac{dA_{3,p}A_{4,p}(1-|w|^{2})^{3}}{(1-\overline {w}z)^{5+1/p}} \biggr). \end{aligned}$$
(3.18)
By using the same argument in the above, we also have \(g_{w}\in H^{p}\) and \(\sup_{w\in\mathbb{D}}\|g_{w}\|_{H^{p}}\leq C\) with a direct calculation. We can take two constants c and d in (3.16) such that \(g_{w}(w)=g_{w}''(w)=0\), then
$$g'_{w}(w)=\frac{C_{2}(p)\overline{w}}{ (1-|w|^{2} )^{1+1/p}}. $$
Hence, for \(w\in\mathbb{D}\),
$$\begin{aligned} C \geq&\Vert T_{\psi_{1},\psi_{2},\varphi}g_{\varphi(w)}\Vert _{H^{p}} \\ \geq&\frac{ (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi _{1}(w)\varphi'(w)+\psi_{2}'(w)|\vert \overline{\varphi(w)}\vert }{ (1-\vert \varphi(w)\vert ^{2} )^{1+1/p}}. \end{aligned}$$
(3.19)
Using (3.19) we have
$$\begin{aligned}& \sup_{\frac{1}{2}<|\varphi(w)|<1}\frac{ (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi_{1}(w)\varphi'(w)+\psi _{2}'(w)|}{ (1-\vert \varphi(w)\vert ^{2} )^{1+1/p}} \\& \quad \leq2\sup_{\frac{1}{2}<|\varphi(w)|<1} \frac{ (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi _{1}(w)\varphi'(w)+\psi_{2}'(w)|\vert \overline{\varphi(w)}\vert }{ (1-\vert \varphi(w)\vert ^{2} )^{1+1/p}} \\& \quad \leq2\sup_{w\in\mathbb{D}} \frac{ (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi _{1}(w)\varphi'(w)+\psi_{2}'(w)|\vert \varphi(w)\vert }{ (1- \vert \varphi(w)\vert ^{2} )^{1+1/p}} \\& \quad \leq2C <\infty. \end{aligned}$$
(3.20)
According to (3.8), one has
$$\begin{aligned}& \sup_{|\varphi(w)|\leq\frac{1}{2}}\frac{ (1-|w|^{2} ) (\log\frac{2}{1-|w|} )|\psi_{1}(w)\varphi'(w)+\psi _{2}'(w)|}{ (1-\vert \varphi(w)\vert ^{2} )^{1+1/p}} \\& \quad \leq \biggl(\frac{4}{3} \biggr)^{1+1/p}\sup _{|\varphi(w)|\leq\frac {1}{2}} \bigl(1-|w|^{2} \bigr) \biggl(\log \frac{2}{1-|w|} \biggr)\bigl\vert \psi _{1}(w)\varphi'(w)+ \psi_{2}'(w)\bigr\vert \\& \quad \leq \biggl(\frac{4}{3} \biggr)^{1+1/p}K_{2}< \infty. \end{aligned}$$
(3.21)
Thus combining (3.20) and (3.21) we get the condition (3.2).
Next, we prove that (3.3). To see this, for a fixed \(w\in\mathbb{D}\), put
$$ h_{w}(z)=\frac{e(1-|w|^{2})}{(1-\overline{w}z)^{1+1/p}}+\frac {f(1-|w|^{2})^{2}}{(1-\overline{w}z)^{2+1/p}}- \frac {(1-|w|^{2})^{3}}{(1-\overline{w}z)^{3+1/p}}; $$
(3.22)
then
$$ h'_{w}(z) =\overline{w} \biggl( \frac{eA_{1,p}(1-|w|^{2})}{(1-\overline {w}z)^{2+1/p}}+\frac{fA_{2,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{3+1/p}} -\frac{A_{3,p}(1-|w|^{2})^{3}}{(1-\overline{w}z)^{4+1/p}} \biggr) $$
(3.23)
and
$$\begin{aligned} h''_{w}(z) =&( \overline{w})^{2} \biggl(\frac {eA_{1,p}A_{2,p}(1-|w|^{2})}{(1-\overline{w}z)^{3+1/p}}+\frac {fA_{2,p}A_{3,p}(1-|w|^{2})^{2}}{(1-\overline{w}z)^{4+1/p}} \biggr) \\ &{}-(\overline{w})^{2} \biggl(\frac{A_{3,p}A_{4,p}(1-|w|^{2})^{3}}{(1-\overline {w}z)^{5+1/p}} \biggr). \end{aligned}$$
(3.24)
We have \(h_{w}\in H^{p}\) and \(\sup_{w\in\mathbb{D}}\|h_{w}\| _{H^{p}}\leq C\). We can take two constants e and f in (3.22) such that \(h_{w}(w)=h'_{w}(w)=0\), then
$$h''_{w}(w)=\frac{C_{3}(p) (\overline{w} )^{2}}{ (1-|w|^{2} )^{2+1/p}}. $$
Thus for \(w\in\mathbb{D}\), we have
$$\begin{aligned} \begin{aligned}[b] C&\geq\|T_{\psi_{1},\psi_{2},\varphi}h_{\varphi(w)}\|_{\mathcal{B}_{\mathrm{log} }} \\ &\geq\frac{(1-|w|^{2}) (\log\frac{2}{1-|w|} )|\psi_{2}(w)\varphi '(w)||\varphi(w)|^{2}}{ (1-\vert \varphi(w)\vert ^{2} )^{2+1/p}}. \end{aligned} \end{aligned}$$
(3.25)
By (3.25), we have
$$\begin{aligned}& \sup_{\frac{1}{2}<|\varphi(w)|<1}\frac{(1-|w|^{2}) (\log\frac {2}{1-|w|} )|\psi_{2}(w)\varphi'(w)|}{ (1-\vert \varphi(w) \vert ^{2} )^{2+1/p}} \\& \quad \leq\sup_{\frac{1}{2}<|\varphi(w)|<1}\frac{(1-|w|^{2}) (\log \frac{2}{1-|w|} )|\psi_{2}(w)\varphi'(w)||\varphi(w)|^{2}}{ (1-\vert \varphi(w)\vert ^{2} )^{2+1/p}} \\& \quad \leq 4\sup_{w\in\mathbb{D}}\frac{(1-|w|^{2}) (\log\frac {2}{1-|w|} )|\psi_{2}(w)\varphi'(w)||\varphi(w)|^{2}}{ (1- \vert \varphi(w)\vert ^{2} )^{2+1/p}} \\& \quad \leq4C<\infty, \end{aligned}$$
(3.26)
$$\begin{aligned}& \sup_{|\varphi(w)|\leq\frac{1}{2}}\frac{(1-|w|^{2}) (\log \frac{2}{1-|w|} )|\psi_{2}(w)\varphi'(w)|}{ (1-\vert \varphi (w)\vert ^{2} )^{2+1/p}} \\& \quad \leq \biggl(\frac{4}{3} \biggr)^{2+1/p}\sup _{|\varphi(w)|\leq\frac {1}{2}}\bigl(1-|w|^{2}\bigr) \biggl(\log \frac{2}{1-|w|} \biggr)\bigl\vert \psi_{2}(w)\varphi'(w) \bigr\vert \\& \quad \leq \biggl(\frac{4}{3} \biggr)^{2+1/p}\sup _{w\in\mathbb {D}}\bigl(1-|w|^{2}\bigr) \biggl(\log \frac{2}{1-|w|} \biggr)\bigl\vert \psi_{2}(w)\varphi'(w) \bigr\vert \\& \quad \leq CK_{3}<\infty. \end{aligned}$$
(3.27)
Combining (3.26) with (3.27) we get (3.3). That ends the proof of Theorem 3.1. □
The following corollary follows by setting \(\psi_{1}(z) = \psi(z)\) and \(\psi_{2}(z)=0\) in Theorem 3.1 at once.
Corollary 3.2
([10, Theorem 4.1])
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is a bounded operator if and only if
$$x_{\psi,\varphi}=\sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi'(z)|}{(1-|\varphi(z)|^{2})^{1/p}}<\infty $$
and
$$y_{\psi,\varphi}=\sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi(z)\varphi'(z)\vert }{(1-|\varphi (z)|^{2})^{1+1/p}}<\infty. $$
The following corollary follows by setting \(\psi_{1}(z) = \psi'(z)\) and \(\psi_{2}(z)=\psi(z)\varphi(z)\) in Theorem 3.1 at once.
Corollary 3.3
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition followed by differentiation \(DW_{\psi,\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log}}\) is a bounded operator if and only if
$$\begin{aligned}& \sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi''(z)|}{(1-|\varphi(z)|^{2})^{1/p}}<\infty, \\& \sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi'(z) (\varphi'(z)+\varphi(z) )+\psi(z)\varphi'(z)\vert }{(1-|\varphi(z)|^{2})^{1+1/p}}<\infty \end{aligned}$$
and
$$\sup_{z\in\mathbb{D}}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi(z)\varphi(z)\varphi'(z)|}{(1-|\varphi (z)|^{2})^{2+1/p}}<\infty. $$
By using the density of the set of all polynomials in \(H^{p}\), we can characterize the boundedness of \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\).
Theorem 3.4
Let \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is a bounded operator if and only if \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is a bounded operator and
$$\begin{aligned}& \lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert =0, \end{aligned}$$
(3.28)
$$\begin{aligned}& \lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+ \psi_{2}'(z)\bigr\vert =0, \end{aligned}$$
(3.29)
$$\begin{aligned}& \lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert =0. \end{aligned}$$
(3.30)
Proof
For the first half of the theorem we may assume that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is bounded, it is clear that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is bounded. For \(f\in H^{p}\), \(T _{\psi_{1},\psi_{2},\varphi}f\in\mathcal{B}_{\mathrm{log},0}\). Taking \(f(z)=1 \in H^{p}\), we have
$$\lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert =0, $$
that is, (3.28) holds. Taking \(f(z)=z \in H^{p}\), we get
$$ \lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}'(z)\varphi(z)+ \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \bigr\vert =0. $$
(3.31)
By (3.31), (3.28), the triangle inequality, and \(\|\varphi\|_{\infty}\leq1\), we have
$$\lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+ \psi_{2}'(z)\bigr\vert =0, $$
that is, (3.29) holds. Taking \(f(z)=z^{2} \in H^{p}\), one has
$$\begin{aligned}& \lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}'(z) \bigl( \varphi(z)\bigr)^{2} \\& \quad {}+2\bigl(\psi_{1}(z)\varphi'(z)+ \psi_{2}'(z)\bigr)\varphi(z)+2\psi_{2}(z) \varphi'(z)\bigr\vert =0. \end{aligned}$$
(3.32)
Using (3.28), (3.29), (3.32), the triangle inequality, and the boundedness of the function \(\varphi(z)\) we have
$$\lim_{|z|\rightarrow1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert =0. $$
Hence (3.30) follows. The proof of the first half of Theorem 3.4 is thus complete.
As for the proof of the second half, we let \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log}}\) be bounded and (3.28), (3.29), and (3.30) hold. Then for each polynomial L, one has
$$\begin{aligned}& \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi _{2},\varphi}L )'(z)\bigr\vert \\& \quad = \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)L\bigl(\varphi(z)\bigr)+ \bigl( \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \bigr)L'\bigl(\varphi(z)\bigr) \\& \qquad {}+\psi_{2}(z)\varphi'(z)L'' \bigl(\varphi(z)\bigr)\bigr\vert \\& \quad \leq \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert \bigl\vert L\bigl(\varphi (z) \bigr)\bigr\vert \\& \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+\psi _{2}'(z) \bigr\vert \bigl\vert L'\bigl(\varphi(z)\bigr)\bigr\vert \\& \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi '(z)\bigr\vert \bigl\vert L''\bigl(\varphi(z)\bigr)\bigr\vert \\& \quad \leq \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert \|L\|_{\infty } \\& \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+\psi _{2}'(z) \bigr\vert \bigl\Vert L'\bigr\Vert _{\infty} \\& \qquad {}+ \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert \bigl\Vert L''\bigr\Vert _{\infty} \\& \quad \rightarrow0\quad \mbox{as } |z|\rightarrow1, \end{aligned}$$
from which it follows that \(T _{\psi_{1},\psi_{2},\varphi}L\in\mathcal {B}_{\mathrm{log},0}\). Since the set of all polynomials is dense in \(H^{p}\), thus for each \(f\in H^{p}\), there is a sequence of polynomials \(\{L_{k}\}_{k\in\mathbb{N}}\), such that
$$\lim_{k\rightarrow\infty}\|L_{k}-f\|_{H^{p}}=0, $$
so
$$\|T _{\psi_{1},\psi_{2},\varphi}L_{k}-T _{\psi_{1},\psi_{2},\varphi}f\|_{\mathcal {B}_{\mathrm{log}}}\leq\|T _{\psi_{1},\psi_{2},\varphi}\|\|L_{k}-f\|_{H^{p}}\rightarrow0\quad \mbox{as } k\rightarrow\infty. $$
Since \(\mathcal{B}_{\mathrm{log},0}\) is the closed subset of \(\mathcal{B}_{\mathrm{log}}\), we see that \(T _{\psi_{1},\psi_{2},\varphi}f\in\mathcal{B}_{\mathrm{log},0}\), and consequently \(T _{\psi_{1},\psi_{2},\varphi}(H^{p})\subseteqq\mathcal{B}_{\mathrm{log},0}\), the boundedness of the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) implies that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is bounded. This ends the proof of Theorem 3.4. □
According to Theorem 3.4 we immediately get the following.
Corollary 3.5
([10, Theorem 5.1])
Let \(\psi\in H(\mathbb{D})\), φ denotes an analytic self-map of \(\mathbb{D}\), then the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is bounded if and only if \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is bounded, \(\psi\in\mathcal{B}_{\mathrm{log},0}\), and
$$\lim_{|z|\rightarrow 1} \bigl(1-|z|^{2} \bigr) \log \frac{2}{1-|z|}\bigl\vert \psi(z)\varphi'(z)\bigr\vert =0. $$
Corollary 3.6
Let \(\psi\in H(\mathbb{D})\), φ denotes an analytic self-map of \(\mathbb{D}\), then the weighted composition followed by differentiation \(DW_{\psi,\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log},0}\) is a bounded operator if and only if \(DW_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is bounded and
$$\begin{aligned}& \lim_{|z|\rightarrow 1} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|}\bigl\vert \psi''(z)\bigr\vert =0, \\& \lim_{|z|\rightarrow 1} \bigl(1-|z|^{2} \bigr) \log \frac{2}{1-|z|}\bigl\vert \psi'(z) \bigl(\varphi'(z)+ \varphi(z) \bigr)+\psi(z)\varphi'(z)\bigr\vert =0, \\& \lim_{|z|\rightarrow 1} \bigl(1-|z|^{2} \bigr)\log \frac{2}{1-|z|}\bigl\vert \psi(z)\varphi(z)\varphi'(z)\bigr\vert =0. \end{aligned}$$

4 The compactness of the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p} \rightarrow\mathcal{B}_{\mathrm{log}}(\mathcal{B}_{\mathrm{log},0})\)

Now we are in a position to prove compactness.
Theorem 4.1
Let \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the following statements are equivalent.
(a)
\(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is compact;
 
(b)
\(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is bounded and
$$\begin{aligned}& \lim_{|\varphi(z)|\rightarrow1} \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi_{1}'(z)|}{(1-|\varphi (z)|^{2})^{1/p}}=0, \end{aligned}$$
(4.1)
$$\begin{aligned}& \lim_{|\varphi(z)|\rightarrow1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \vert }{(1-|\varphi(z)|^{2})^{1+1/p}}=0, \end{aligned}$$
(4.2)
$$\begin{aligned}& \lim_{|\varphi(z)|\rightarrow1} \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi_{2}(z)\varphi '(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}=0. \end{aligned}$$
(4.3)
 
Proof
(b) ⇒ (a). Suppose that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is bounded, (4.1), (4.2), and (4.3) hold. To prove that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is compact, for any bounded sequence \(\{f_{k}\}\) in \(H^{p}\) with \(f_{k}\rightarrow0\) uniformly on compact subsets of \(\mathbb{D}\), let \(\|f_{k}\|_{H^{p}}\leq1\), it suffices, in view of Lemma 2.3, to show that
$$\|T _{\psi_{1},\psi_{2},\varphi}f_{k}\|_{\mathcal{B}_{\mathrm{log}}}\rightarrow0 \quad \mbox{as } k\rightarrow\infty. $$
By (4.1), (4.2), and (4.3), we have for any \(\varepsilon>0\), there exists \(\rho\in(0,1)\) such that
$$\begin{aligned}& \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi_{1}'(z)|}{(1-|\varphi (z)|^{2})^{1/p}}<\varepsilon, \end{aligned}$$
(4.4)
$$\begin{aligned}& \frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \vert }{(1-|\varphi(z)|^{2})^{1+1/p}}<\varepsilon \end{aligned}$$
(4.5)
and
$$ \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi_{2}(z)\varphi '(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}<\varepsilon, $$
(4.6)
for \(\rho<|\varphi(z)|<1\). From the boundedness of the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) and the proof of Theorem 3.1, (3.6), (3.8), and (3.10) hold. Since \(f_{k}\rightarrow0\) uniformly on compact subsets of \(\mathbb{D}\), Cauchy’s estimate shows that \(f'_{k}\) and \(f''_{k}\) converge to 0 uniformly on compact subsets of \(\mathbb{D}\), there exists a \(K_{0}\in\mathbb{N}\) such that \(k>K_{0}\) implies that
$$\begin{aligned}& \bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k}) (0)\bigr\vert +\sup_{|\varphi(z)|\leq\rho} \bigl(1-|z|^{2} \bigr) \log \frac{2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k})'(z) \bigr\vert \\ & \quad \leq\bigl\vert \psi_{1}(0)f_{k}\bigl(\varphi(0) \bigr) + \psi_{2}(0)f_{k}'\bigl(\varphi(0)\bigr) \bigr\vert \\ & \qquad {}+\sup_{|\varphi(z)|\leq\rho} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert \bigl\vert f_{k}\bigl(\varphi(z)\bigr)\bigr\vert \\ & \qquad {}+\sup_{|\varphi(z)|\leq\rho} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+ \psi_{2}'(z)\bigr\vert \bigl\vert f'_{k} \bigl(\varphi(z)\bigr)\bigr\vert \\ & \qquad {}+\sup_{|\varphi(z)|\leq\rho} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert \bigl\vert f''_{k}\bigl(\varphi(z) \bigr)\bigr\vert \\& \quad \leq\bigl\vert \psi_{1}(0)\bigr\vert \bigl\vert f_{k}\bigl(\varphi(0)\bigr)\bigr\vert +\bigl\vert \psi_{2}(0)f_{k}'\bigl(\varphi(0)\bigr)\bigr\vert \\& \qquad {}+K_{1}\sup_{|\varphi(z)|\leq\rho}\bigl\vert f_{k}\bigl(\varphi(z)\bigr)\bigr\vert +K_{2}\sup _{|\varphi(z)|\leq\rho}\bigl\vert f'_{k}\bigl( \varphi(z)\bigr)\bigr\vert +K_{3}\sup_{|\varphi(z)|\leq\rho}\bigl\vert f''_{k}\bigl(\varphi(z)\bigr)\bigr\vert \\ & \quad < C\varepsilon. \end{aligned}$$
(4.7)
When \(k>K_{0}\), from (4.4), (4.5), (4.6), (4.7), Lemmas 2.1 and 2.2, one has
$$\begin{aligned}& \|T_{\psi_{1},\psi_{2},\varphi}f_{k}\|_{\mathcal{B}_{\mathrm{log}}} \\ & \quad =\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k} ) (0)\bigr\vert +\sup _{z\in\mathbb{D}} \bigl(1-|z|^{2} \bigr)\log\frac {2}{1-|z|} \bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k} )'(z) \bigr\vert \\ & \quad \leq \biggl( \bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k} ) (0)\bigr\vert +\sup_{|\varphi(z)|\leq\rho} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k} )'(z) \bigr\vert \biggr) \\ & \qquad {}+\sup_{\rho<|\varphi(z)|<1} \bigl(1-|z|^{2} \bigr)\log \frac {2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f_{k} )'(z)\bigr\vert \\ & \quad <C\varepsilon+ 2C\sup_{\rho<|\varphi(z)|<1}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi_{1}'(z)|}{(1-|\varphi(z)|^{2})^{1/p}} \|f_{k}\| _{H^{p}} \\& \qquad {}+C\sup_{\rho<|\varphi(z)|<1} \frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \vert }{(1-|\varphi(z)|^{2})^{1+1/p}}\|f_{k} \|_{H^{p}} \\& \qquad {}+C\sup_{\rho<|\varphi(z)|<1}\frac{ (1-|z|^{2} )\log \frac{2}{1-|z|}|\psi_{2}(z)\varphi'(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}\| f_{k} \|_{H^{p}} \\ & \quad < 5C\varepsilon, \end{aligned}$$
it follows that the operator \(T _{\psi_{1},\psi_{2},\varphi}: \mathcal {B}_{\mathrm{log}}\rightarrow\mathcal{B}_{\mathrm{log}}\) is compact.
(a) ⇒ (b). It is clear that the compactness of \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) implies the boundedness of \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\). If \(\|\varphi\|_{\infty}<1\), it is clear that the limit in (4.1), (4.2), and (4.3) is vacuously equal to zero. Hence, assume that \(\|\varphi\|_{\infty}=1\), let \(\{z_{k}\}\) be a sequence in \(\mathbb{D}\) such that \(|\varphi (z_{k})|\rightarrow1\) as \(k\rightarrow\infty\). We can use the test functions
$$ f_{k}(z)=f_{\varphi(z_{k})}(z), $$
\(f_{w}\) here is defined in (3.11). Equations (3.12), (3.13), and (3.14) tell us that
$$\sup_{k\in\mathbb{N}}\|f_{k}\|_{H^{p}}\leq C $$
and
$$ f_{k}\bigl(\varphi(z_{k})\bigr)=\frac{C_{1}(p)}{(1-|\varphi(z_{k})|^{2})^{1/p}},\qquad f_{k}'\bigl(\varphi(z_{k})\bigr)= f_{k}''\bigl(\varphi(z_{k}) \bigr)=0. $$
We see that \(f_{k}\) converges to 0 uniformly on \(\mathbb{D}\), hence \({f_{k}}\) converges to 0 uniformly on compact subsets of \(\mathbb{D}\). Then \({f_{k}}\) is a bounded sequence in \(H^{p}\) which converges to 0 uniformly on compact subsets of \(\mathbb{D}\). By Lemma 2.3, we obtain
$$\lim_{k\rightarrow\infty}\|T _{\psi_{1},\psi_{2},\varphi}f_{k}\| _{\mathcal{B}_{\mathrm{log}}}=0. $$
From (3.15) and the compactness of \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\), we get
$$\begin{aligned}& \frac{|C_{1}(p)|(1-|z_{k}|^{2}) (\log\frac{2}{1-|z_{k}|} )|\psi _{1}'(z_{k})|}{ (1-\vert \varphi(z_{k})\vert ^{2} )^{1/p}} \\& \quad \leq\|T_{\psi_{1},\psi_{2},\varphi}f_{k}\|_{\mathcal{B}_{\mathrm{log}}}\rightarrow 0\quad \mbox{as } k\rightarrow\infty. \end{aligned}$$
This proves (4.1).
Next, let
$$ g_{k}(z)=g_{\varphi(z_{k})}(z), $$
where \(g_{w}\) is defined in (3.16). By a direct calculation, we find that \({g_{k}} \) converges to 0 uniformly on compact subsets of \(\mathbb{D}\), \(g_{k}\in H^{p}\), and \(\sup_{k\in\mathbb{N}}\|g_{k}\|_{H^{p}}\leq C\). By Lemma 2.3, we have
$$\lim_{k\rightarrow\infty}\|T _{\psi_{1},\psi_{2},\varphi}g_{k}\| _{\mathcal {B}_{\mathrm{log}}}=0. $$
Note that from (3.16), (3.17), and (3.18), one has \(g_{k} (\varphi (z_{k} ) )=g_{k}' (\varphi (z_{k} ) )=0\),
$$g'_{k} \bigl(\varphi(z_{k}) \bigr)= \frac{C_{2}(p)\overline{\varphi (z_{k})}}{(1-|\varphi(z_{k})|^{2})^{1+1/p}}. $$
From (3.19) and using the compactness of the operator \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\), we get that
$$\begin{aligned}& \frac{|C_{2}(p)|(1-|z_{k}|^{2}) (\log\frac{2}{1-|z_{k}|} )\vert \psi _{1}(z_{k})\varphi'(z_{k})+\psi_{2}'(z_{k})\vert \vert \overline{\varphi (z_{k})}\vert }{(1-\vert \varphi(z_{k})\vert ^{2})^{1+1/p}} \\& \quad \leq\|T _{\psi_{1},\psi_{2},\varphi}g_{k}\|_{\mathcal {B}_{\mathrm{log}}}\rightarrow0 \quad \mbox{as } k\rightarrow\infty. \end{aligned}$$
(4.8)
By (4.8) and \(|\varphi(z_{k})|\rightarrow1\), we have
$$\lim_{k\rightarrow\infty}\frac{(1-|z_{k}|^{2}) (\log\frac {2}{1-|z_{k}|} )\vert \psi_{1}(z_{k})\varphi'(z_{k})+\psi_{2}'(z_{k}) \vert }{(1-\vert \varphi(z_{k})\vert ^{2})^{1+1/p}}=0, $$
it implies that (4.2) holds.
Analogously, (4.3) can be proved by choosing the test function \(h_{k}(z)=h_{\varphi(z_{k})}(z)\), \(h_{w}\) here is defined in (3.22), and that proves Theorem 4.1. □
From Theorem 4.1 we can get the characterization of the compactness of the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) and the operator \(DW_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\).
Corollary 4.2
([10, Theorem 4.2])
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is compact if and only if \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is bounded and
$$\begin{aligned}& \lim_{|\varphi(z)|\rightarrow 1}\frac{ (1-|z|^{2} )\log \frac{2}{1-|z|}|\psi'(z)|}{(1-|\varphi(z)|^{2})^{1/p}}=0, \\& \lim_{|\varphi(z)|\rightarrow 1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi(z)\varphi'(z)\vert }{(1-|\varphi (z)|^{2})^{1+1/p}}=0. \end{aligned}$$
Corollary 4.3
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition followed by differentiation \(DW_{\psi,\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log}}\) is a compact operator if and only if \(DW_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log}}\) is bounded and
$$\begin{aligned}& \lim_{|\varphi(z)|\rightarrow 1}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi''(z)|}{(1-|\varphi (z)|^{2})^{1/p}}=0, \\& \lim_{|\varphi(z)|\rightarrow 1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi'(z) (\varphi'(z)+\varphi(z) )+\psi(z)\varphi'(z)\vert }{(1-|\varphi(z)|^{2})^{1+1/p}}=0, \\& \lim_{|\varphi(z)|\rightarrow 1}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi(z)\varphi '(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}=0. \end{aligned}$$
Next we consider the compactness of \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log},0}\). The compactness of operators of which the range is in \(\mathcal{B}_{\mathrm{log},0}\) has a close relation with Lemma 2.4.
Theorem 4.4
Let \(\psi_{1}, \psi_{2}\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the following statements are equivalent.
(a)
\(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log},0}\) is compact;
 
(b)
$$\begin{aligned}& \lim_{|z|\rightarrow1}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi_{1}'(z)|}{(1-|\varphi(z)|^{2})^{1/p}}=0, \end{aligned}$$
(4.9)
$$\begin{aligned}& \lim_{|z|\rightarrow1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi_{1}(z)\varphi'(z)+\psi_{2}'(z) \vert }{(1-|\varphi(z)|^{2})^{1+1/p}}=0 \end{aligned}$$
(4.10)
and
$$ \lim_{|z|\rightarrow1}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi_{2}(z)\varphi'(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}=0. $$
(4.11)
 
Proof
(b) ⇒ (a). Suppose that (4.9), (4.10), and (4.11) hold. By Theorems 3.1 and 3.4, it is clear that \(T _{\psi_{1},\psi_{2},\varphi}:H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is bounded. Taking the supremum in inequality (3.4) over all \(f\in H^{p}\) such that \(\|f\|_{H^{p}}\leq1\) and letting \(|z|\rightarrow1\), yields
$$\lim_{|z|\rightarrow1}\sup_{\|f\|_{H^{p}}\leq1} \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert (T _{\psi_{1},\psi_{2},\varphi}f )'(z) \bigr\vert =0. $$
Therefore, by Lemma 2.4, we have \(T _{\psi_{1},\psi_{2},\varphi}:H^{p}\rightarrow\mathcal {B}_{\mathrm{log},0}\) is compact.
(a) ⇒ (b). Assume that \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is compact. Firstly, it is obvious \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log}}\) is compact. By Theorem 4.1, \(\psi_{1}\), \(\psi_{2}\), and φ satisfy conditions (4.1), (4.2), and (4.3). It follows that for every \(\varepsilon>0\), there exists \(\rho\in(0,1)\) such that (4.4), (4.5), and (4.6) hold for \(\rho<|\varphi(z)|<1\). On the other hand, since \(T _{\psi_{1},\psi_{2},\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is compact, then \(T _{\psi_{1},\psi_{2},\varphi}:H^{p}\rightarrow\mathcal {B}_{\mathrm{log},0}\) is bounded. By Theorem 3.4, \(\psi_{1}\), \(\psi_{2}\), and φ also satisfy conditions (3.28), (3.29), and (3.30). Thus for \(\varepsilon>0\), there exists \(\gamma\in(0,1)\) such that
$$\begin{aligned}& \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}'(z)\bigr\vert <\bigl(1-\rho ^{2} \bigr)^{1/p}\varepsilon, \end{aligned}$$
(4.12)
$$\begin{aligned}& \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{1}(z)\varphi'(z)+\psi _{2}'(z) \bigr\vert <\bigl(1-\rho^{2}\bigr)^{1+1/p}\varepsilon, \end{aligned}$$
(4.13)
$$\begin{aligned}& \bigl(1-|z|^{2} \bigr)\log\frac{2}{1-|z|}\bigl\vert \psi_{2}(z)\varphi'(z)\bigr\vert <\bigl(1-\rho ^{2}\bigr)^{2+1/p}\varepsilon, \end{aligned}$$
(4.14)
for \(\gamma<|z|<1\). Next, we prove that (4.12) and (4.4) imply (4.9). The proof of (4.10) and (4.11) is similar, hence it will be omitted.
From (4.4), one has, when \(\gamma<|z|<1\) and \(\rho<|\varphi(z)|<1\),
$$ \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi'(z)|}{(1-|\varphi (z)|^{2})^{1/p}}<\varepsilon. $$
(4.15)
By (4.12), we get, when \(\gamma<|z|<1\) and \(|\varphi(z)|\leq\rho\),
$$\begin{aligned}& \frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi'(z)|}{(1-|\varphi (z)|^{2})^{1/p}} \\& \quad \leq\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi'(z)|}{(1-\rho^{2})^{1/p}} <\varepsilon. \end{aligned}$$
(4.16)
Having in mind (4.15) and (4.16) we conclude that (4.9) holds. This finishes the proof. □
Due to Theorem 4.4, the characterization of the compactness of the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) and the operator \(DW_{\psi,\varphi}: H^{p}\rightarrow\mathcal {B}_{\mathrm{log},0}\) are now obvious.
Corollary 4.5
([10, Theorem 5.2])
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition operator \(W_{\psi,\varphi}: H^{p}\rightarrow\mathcal{B}_{\mathrm{log},0}\) is compact if and only if
$$\lim_{z|\rightarrow 1}\frac{ (1-|z|^{2} )\log\frac {2}{1-|z|}|\psi'(z)|}{(1-|\varphi(z)|^{2})^{1/p}}=0 $$
and
$$\lim_{|z|\rightarrow 1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi(z)\varphi'(z)\vert }{(1-|\varphi (z)|^{2})^{1+1/p}}=0. $$
Corollary 4.6
Let \(\psi\in H(\mathbb{D})\), φ denote an analytic self-map of \(\mathbb{D}\), then the weighted composition followed by differentiation \(DW_{\psi,\varphi}: H^{p}\rightarrow \mathcal{B}_{\mathrm{log},0}\) is a compact operator if and only if
$$\begin{aligned}& \lim_{|z|\rightarrow 1}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi''(z)|}{(1-|\varphi (z)|^{2})^{1/p}}=0, \\& \lim_{|z|\rightarrow 1}\frac{ (1-|z|^{2} ) \log\frac{2}{1-|z|}\vert \psi'(z) (\varphi'(z)+\varphi(z) )+\psi(z)\varphi'(z)\vert }{(1-|\varphi(z)|^{2})^{1+1/p}}=0, \end{aligned}$$
and
$$\lim_{|z|\rightarrow 1}\frac{ (1-|z|^{2} )\log\frac{2}{1-|z|}|\psi(z)\varphi(z)\varphi '(z)|}{(1-|\varphi(z)|^{2})^{2+1/p}}=0. $$

Acknowledgements

The project is supported by the Natural Science Foundation of China (No. 11171285) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referees for their valuable suggestions and for bringing important references to our attention.
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. They also read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Duren, P: Theory of H p Spaces. Academic Press, New York (1970) MATH Duren, P: Theory of H p Spaces. Academic Press, New York (1970) MATH
2.
Zurück zum Zitat Garnett, J: Bounded Analytic Functions, (revised first edition). Graduate Texts in Mathematics, vol. 236. Springer, New York (2007) Garnett, J: Bounded Analytic Functions, (revised first edition). Graduate Texts in Mathematics, vol. 236. Springer, New York (2007)
3.
Zurück zum Zitat Ye, S: Multipliers and cyclic vectors on the weighted Bloch type space. Math. J. Okayama Univ. 48, 135-143 (2006) MATHMathSciNet Ye, S: Multipliers and cyclic vectors on the weighted Bloch type space. Math. J. Okayama Univ. 48, 135-143 (2006) MATHMathSciNet
5.
Zurück zum Zitat Rudin, W: Real and Complex Analysis, 2nd edn. McGraw-Hill, New York (1974) MATH Rudin, W: Real and Complex Analysis, 2nd edn. McGraw-Hill, New York (1974) MATH
6.
Zurück zum Zitat Arazy, J: Multipliers of Bloch Functions. University of Haifa Mathematics Publications Series, vol. 54 (1982) Arazy, J: Multipliers of Bloch Functions. University of Haifa Mathematics Publications Series, vol. 54 (1982)
8.
Zurück zum Zitat Li, S, Stević, S: Volterra-type operators on Zygmund spaces. J. Inequal. Appl. 2007, Article ID 32124 (2007) Li, S, Stević, S: Volterra-type operators on Zygmund spaces. J. Inequal. Appl. 2007, Article ID 32124 (2007)
10.
Zurück zum Zitat Colonna, F, Li, S: Weighted composition operators from Hardy spaces into logarithmic Bloch spaces. J. Funct. Spaces Appl. 2012, Article ID 454820 (2012) CrossRefMathSciNet Colonna, F, Li, S: Weighted composition operators from Hardy spaces into logarithmic Bloch spaces. J. Funct. Spaces Appl. 2012, Article ID 454820 (2012) CrossRefMathSciNet
11.
Zurück zum Zitat Castillo, RE, Clahane, DD, Farías López, JF, Ramos Fernández, JC: Composition operators from logarithmic Bloch spaces to weighted Bloch spaces. Appl. Math. Comput. 219(12), 6692-6706 (2013) CrossRefMATHMathSciNet Castillo, RE, Clahane, DD, Farías López, JF, Ramos Fernández, JC: Composition operators from logarithmic Bloch spaces to weighted Bloch spaces. Appl. Math. Comput. 219(12), 6692-6706 (2013) CrossRefMATHMathSciNet
12.
Zurück zum Zitat Galanopoulos, P: On \({\mathcal{B}}_{\mathrm{log}}\) to \(Q_{\mathrm{log}}^{p}\) pullbacks. J. Math. Anal. Appl. 337(1), 712-725 (2008) CrossRefMATHMathSciNet Galanopoulos, P: On \({\mathcal{B}}_{\mathrm{log}}\) to \(Q_{\mathrm{log}}^{p}\) pullbacks. J. Math. Anal. Appl. 337(1), 712-725 (2008) CrossRefMATHMathSciNet
13.
Zurück zum Zitat García Ortiz, AJ, Ramos-Fernández, JC: Composition operators from logarithmic Bloch spaces to Bloch-type spaces. Georgian Math. J. 20(4), 671-686 (2013) CrossRefMATHMathSciNet García Ortiz, AJ, Ramos-Fernández, JC: Composition operators from logarithmic Bloch spaces to Bloch-type spaces. Georgian Math. J. 20(4), 671-686 (2013) CrossRefMATHMathSciNet
15.
Zurück zum Zitat Qu, H, Liu, Y, Cheng, S: Weighted differentiation composition operator from logarithmic Bloch spaces to Zygmund-type spaces. Abstr. Appl. Anal. 2014, Article ID 832713 (2014) MathSciNet Qu, H, Liu, Y, Cheng, S: Weighted differentiation composition operator from logarithmic Bloch spaces to Zygmund-type spaces. Abstr. Appl. Anal. 2014, Article ID 832713 (2014) MathSciNet
16.
Zurück zum Zitat Ye, S: Weighted composition operator between different weighted Bloch type spaces. Acta Math. Sin., Chin. Ser. 50, 927-942 (2007) MATH Ye, S: Weighted composition operator between different weighted Bloch type spaces. Acta Math. Sin., Chin. Ser. 50, 927-942 (2007) MATH
17.
Zurück zum Zitat Ye, S: Weighted composition operator from the general function space \(F(p,q,s)\) into the logarithmic Bloch space. J. Korean Math. Soc. 45(4), 977-991 (2008) CrossRefMATHMathSciNet Ye, S: Weighted composition operator from the general function space \(F(p,q,s)\) into the logarithmic Bloch space. J. Korean Math. Soc. 45(4), 977-991 (2008) CrossRefMATHMathSciNet
18.
19.
Zurück zum Zitat Stević, S, Sharma, A, Bhat, A: Products of multiplication, composition and differentiation operators on weighted Bergman space. Appl. Math. Comput. 217, 8115-8125 (2011) CrossRefMATHMathSciNet Stević, S, Sharma, A, Bhat, A: Products of multiplication, composition and differentiation operators on weighted Bergman space. Appl. Math. Comput. 217, 8115-8125 (2011) CrossRefMATHMathSciNet
20.
Zurück zum Zitat Stević, S, Sharma, A, Bhat, A: Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 218(6), 2386-2397 (2011) CrossRefMATHMathSciNet Stević, S, Sharma, A, Bhat, A: Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 218(6), 2386-2397 (2011) CrossRefMATHMathSciNet
21.
Zurück zum Zitat Zhang, F, Liu, Y: Products of multiplication, composition and differentiation operators from mixed-norm spaces to weighted-type spaces. Taiwan. J. Math. 18(6), 1927-1940 (2014) Zhang, F, Liu, Y: Products of multiplication, composition and differentiation operators from mixed-norm spaces to weighted-type spaces. Taiwan. J. Math. 18(6), 1927-1940 (2014)
22.
Zurück zum Zitat Datt, G: Product of composition and multiplication operators. Acta Math. Vietnam. 37(2), 293-300 (2012) MATHMathSciNet Datt, G: Product of composition and multiplication operators. Acta Math. Vietnam. 37(2), 293-300 (2012) MATHMathSciNet
23.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 9(2), 195-205 (2007) MATHMathSciNet Li, S, Stević, S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 9(2), 195-205 (2007) MATHMathSciNet
24.
Zurück zum Zitat Li, S, Stević, S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338, 1282-1295 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338, 1282-1295 (2008) CrossRefMATHMathSciNet
25.
Zurück zum Zitat Li, S, Stević, S: Products of Volterra type operator and composition operator from \(H^{\infty}\) and Bloch spaces to Zygmund spaces. J. Math. Anal. Appl. 345, 40-52 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Products of Volterra type operator and composition operator from \(H^{\infty}\) and Bloch spaces to Zygmund spaces. J. Math. Anal. Appl. 345, 40-52 (2008) CrossRefMATHMathSciNet
26.
Zurück zum Zitat Li, S, Stević, S: Products of composition and integral type operators from \(H^{\infty}\) to the Bloch space. Complex Var. Elliptic Equ. 53(5), 463-474 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Products of composition and integral type operators from \(H^{\infty}\) to the Bloch space. Complex Var. Elliptic Equ. 53(5), 463-474 (2008) CrossRefMATHMathSciNet
27.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation between Bergman spaces and Bloch type spaces. J. Appl. Funct. Anal. 3(3), 333-340 (2008) MATHMathSciNet Li, S, Stević, S: Composition followed by differentiation between Bergman spaces and Bloch type spaces. J. Appl. Funct. Anal. 3(3), 333-340 (2008) MATHMathSciNet
28.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation between \(H^{\infty}\) and α-Bloch spaces. Houst. J. Math. 35, 327-340 (2009) MATH Li, S, Stević, S: Composition followed by differentiation between \(H^{\infty}\) and α-Bloch spaces. Houst. J. Math. 35, 327-340 (2009) MATH
29.
Zurück zum Zitat Liu, Y, Yu, Y: Weighted differentiation composition operators from mixed-norm to Zygmund spaces. Numer. Funct. Anal. Optim. 31, 936-954 (2010) CrossRefMATHMathSciNet Liu, Y, Yu, Y: Weighted differentiation composition operators from mixed-norm to Zygmund spaces. Numer. Funct. Anal. Optim. 31, 936-954 (2010) CrossRefMATHMathSciNet
30.
Zurück zum Zitat Liu, X, Yu, Y: The product of differentiation operator and multiplication operator from \(H^{\infty}\) to Zygmund spaces. J. Xuzhou Norm. Univ. Nat. Sci. Ed. 29, 37-39 (2011) MATH Liu, X, Yu, Y: The product of differentiation operator and multiplication operator from \(H^{\infty}\) to Zygmund spaces. J. Xuzhou Norm. Univ. Nat. Sci. Ed. 29, 37-39 (2011) MATH
31.
Zurück zum Zitat Liu, Y, Yu, Y: Composition followed by differentiation between \(H^{\infty}\) and Zygmund spaces. Complex Anal. Oper. Theory 6, 121-137 (2012) CrossRefMATHMathSciNet Liu, Y, Yu, Y: Composition followed by differentiation between \(H^{\infty}\) and Zygmund spaces. Complex Anal. Oper. Theory 6, 121-137 (2012) CrossRefMATHMathSciNet
32.
Zurück zum Zitat Stević, S: Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces. Util. Math. 77, 167-172 (2008) MATHMathSciNet Stević, S: Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces. Util. Math. 77, 167-172 (2008) MATHMathSciNet
33.
Zurück zum Zitat Stević, S: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to \(H^{\infty}_{\mu}\). Appl. Math. Comput. 207(1), 225-229 (2009) CrossRefMATHMathSciNet Stević, S: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to \(H^{\infty}_{\mu}\). Appl. Math. Comput. 207(1), 225-229 (2009) CrossRefMATHMathSciNet
34.
Zurück zum Zitat Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 16(4), 623-635 (2009) MATHMathSciNet Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 16(4), 623-635 (2009) MATHMathSciNet
35.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211, 222-233 (2009) CrossRefMATHMathSciNet Stević, S: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211, 222-233 (2009) CrossRefMATHMathSciNet
36.
Zurück zum Zitat Stević, S: Composition followed by differentiation from \(H^{\infty}\) and the Bloch space to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216(12), 3450-3458 (2010) CrossRefMATHMathSciNet Stević, S: Composition followed by differentiation from \(H^{\infty}\) and the Bloch space to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216(12), 3450-3458 (2010) CrossRefMATHMathSciNet
37.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from \(H^{\infty}\) and Bloch spaces to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216(12), 3634-3641 (2010) CrossRefMATHMathSciNet Stević, S: Weighted differentiation composition operators from \(H^{\infty}\) and Bloch spaces to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216(12), 3634-3641 (2010) CrossRefMATHMathSciNet
38.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk. Abstr. Appl. Anal. 2010, Article ID 246287 (2010) Stević, S: Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk. Abstr. Appl. Anal. 2010, Article ID 246287 (2010)
39.
40.
Zurück zum Zitat Hibschweiler, RA, Portnoy, N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 35(3), 843-855 (2005) CrossRefMATHMathSciNet Hibschweiler, RA, Portnoy, N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 35(3), 843-855 (2005) CrossRefMATHMathSciNet
41.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces. Sb. Math. 199(12), 1847-1857 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces. Sb. Math. 199(12), 1847-1857 (2008) CrossRefMATHMathSciNet
42.
Zurück zum Zitat Yang, W: Products of composition and differentiation operators from \(Q_{K}(p, q)\) spaces to Bloch-type spaces. Abstr. Appl. Anal. 2009, Article ID 741920 (2009) Yang, W: Products of composition and differentiation operators from \(Q_{K}(p, q)\) spaces to Bloch-type spaces. Abstr. Appl. Anal. 2009, Article ID 741920 (2009)
43.
Zurück zum Zitat Yu, Y, Liu, Y: The product of differentiation operator and multiplication operator from the mixed-norm to Bloch-type space. Acta Math. Sci. Ser. A Chin. Ed. 32, 68-79 (2012) (Chinese) MATHMathSciNet Yu, Y, Liu, Y: The product of differentiation operator and multiplication operator from the mixed-norm to Bloch-type space. Acta Math. Sci. Ser. A Chin. Ed. 32, 68-79 (2012) (Chinese) MATHMathSciNet
44.
Zurück zum Zitat Zhu, X: Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces. Integral Transforms Spec. Funct. 18, 223-231 (2007) CrossRefMATHMathSciNet Zhu, X: Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces. Integral Transforms Spec. Funct. 18, 223-231 (2007) CrossRefMATHMathSciNet
45.
Zurück zum Zitat Kumar, S, Singh, KJ: Weighted composition operators on weighted Bergman spaces. Extr. Math. 22(3), 245-256 (2007) MATHMathSciNet Kumar, S, Singh, KJ: Weighted composition operators on weighted Bergman spaces. Extr. Math. 22(3), 245-256 (2007) MATHMathSciNet
46.
Zurück zum Zitat Čučkovič, Z, Zhao, R: Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Ill. J. Math. 51(2), 479-498 (2007) MATH Čučkovič, Z, Zhao, R: Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Ill. J. Math. 51(2), 479-498 (2007) MATH
47.
Zurück zum Zitat Liang, Y, Zhou, Z: Essential norm of the product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100(4), 347-360 (2013) CrossRefMATHMathSciNet Liang, Y, Zhou, Z: Essential norm of the product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100(4), 347-360 (2013) CrossRefMATHMathSciNet
48.
Zurück zum Zitat Liang, Y, Zhou, Z: New estimate of essential norm of composition followed by differentiation between Bloch-type spaces. Banach J. Math. Anal. 8(1), 118-137 (2014) CrossRefMATHMathSciNet Liang, Y, Zhou, Z: New estimate of essential norm of composition followed by differentiation between Bloch-type spaces. Banach J. Math. Anal. 8(1), 118-137 (2014) CrossRefMATHMathSciNet
49.
Zurück zum Zitat Ye, S: Norm and essential norm of composition followed by differentiation from logarithmic Bloch spaces to \(H^{\infty}_{\mu}\). Abstr. Appl. Anal. 2014, Article ID 725145 (2014) CrossRef Ye, S: Norm and essential norm of composition followed by differentiation from logarithmic Bloch spaces to \(H^{\infty}_{\mu}\). Abstr. Appl. Anal. 2014, Article ID 725145 (2014) CrossRef
50.
Zurück zum Zitat Hyvärinen, O, Nieminen, I: Weighted composition followed by differentiation between Bloch-type spaces. Rev. Mat. Complut. 27, 641-656 (2014) CrossRefMATHMathSciNet Hyvärinen, O, Nieminen, I: Weighted composition followed by differentiation between Bloch-type spaces. Rev. Mat. Complut. 27, 641-656 (2014) CrossRefMATHMathSciNet
51.
Zurück zum Zitat Liang, Y, Zhou, Z: Product of extended Cesàro operator and composition operator from Lipschitz space to \(F(p,q,s)\) space on the unit ball. Abstr. Appl. Anal. 2011, Article ID 152635 (2011) CrossRefMathSciNet Liang, Y, Zhou, Z: Product of extended Cesàro operator and composition operator from Lipschitz space to \(F(p,q,s)\) space on the unit ball. Abstr. Appl. Anal. 2011, Article ID 152635 (2011) CrossRefMathSciNet
52.
Zurück zum Zitat Liu, Y, Zhou, J: On an operator \(M_{u}{\mathcal{R}}\) from mixed norm spaces to Zygmund-type spaces on the unit ball. Complex Anal. Oper. Theory 7, 593-606 (2013) CrossRefMATHMathSciNet Liu, Y, Zhou, J: On an operator \(M_{u}{\mathcal{R}}\) from mixed norm spaces to Zygmund-type spaces on the unit ball. Complex Anal. Oper. Theory 7, 593-606 (2013) CrossRefMATHMathSciNet
53.
Zurück zum Zitat Liu, Y, Yu, Y: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423(1), 76-93 (2015) CrossRefMATHMathSciNet Liu, Y, Yu, Y: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423(1), 76-93 (2015) CrossRefMATHMathSciNet
54.
Zurück zum Zitat Stević, S: On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 217(12), 5930-5935 (2011) CrossRefMATHMathSciNet Stević, S: On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 217(12), 5930-5935 (2011) CrossRefMATHMathSciNet
55.
Zurück zum Zitat Stević, S: Weighted radial operator from the mixed-norm space to the nth weighted-type space on the unit ball. Appl. Math. Comput. 218, 9241-9247 (2012) CrossRefMATHMathSciNet Stević, S: Weighted radial operator from the mixed-norm space to the nth weighted-type space on the unit ball. Appl. Math. Comput. 218, 9241-9247 (2012) CrossRefMATHMathSciNet
56.
Zurück zum Zitat Krantz, S, Stević, S: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 71(5-6), 1772-1795 (2009) CrossRefMATH Krantz, S, Stević, S: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 71(5-6), 1772-1795 (2009) CrossRefMATH
57.
Zurück zum Zitat Stević, S: Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 76, 59-64 (2008) MATHMathSciNet Stević, S: Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 76, 59-64 (2008) MATHMathSciNet
58.
Zurück zum Zitat Stević, S: On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Appl. Math. Comput. 206(1), 313-320 (2008) CrossRefMATHMathSciNet Stević, S: On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Appl. Math. Comput. 206(1), 313-320 (2008) CrossRefMATHMathSciNet
59.
Zurück zum Zitat Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 354(2), 426-434 (2009) CrossRefMATHMathSciNet Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 354(2), 426-434 (2009) CrossRefMATHMathSciNet
60.
61.
Zurück zum Zitat Zhou, J, Liu, Y: Products of radial derivative and multiplication operators from \(F(p, q, s)\) to weighted-type spaces on the unit ball. Taiwan. J. Math. 17(1), 161-178 (2013) MATH Zhou, J, Liu, Y: Products of radial derivative and multiplication operators from \(F(p, q, s)\) to weighted-type spaces on the unit ball. Taiwan. J. Math. 17(1), 161-178 (2013) MATH
62.
Zurück zum Zitat Zhou, J, Liu, Y: Products of radial derivative and multiplication operator between mixed norm spaces and Zygmund-type spaces on the unit ball. Math. Inequal. Appl. 17, 349-366 (2014) MATHMathSciNet Zhou, J, Liu, Y: Products of radial derivative and multiplication operator between mixed norm spaces and Zygmund-type spaces on the unit ball. Math. Inequal. Appl. 17, 349-366 (2014) MATHMathSciNet
63.
Zurück zum Zitat Cowen, C, MacCluer, B: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995) MATH Cowen, C, MacCluer, B: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995) MATH
64.
Zurück zum Zitat Tjani, M: Compact composition operators on some Moebius invariant Banach spaces. Dissertation, Michigan State University (1996) Tjani, M: Compact composition operators on some Moebius invariant Banach spaces. Dissertation, Michigan State University (1996)
65.
66.
Zurück zum Zitat Montes-Rodriguez, A: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61, 872-884 (2000) CrossRefMATHMathSciNet Montes-Rodriguez, A: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61, 872-884 (2000) CrossRefMATHMathSciNet
Metadaten
Titel
On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces
verfasst von
Yongmin Liu
Yanyan Yu
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0547-1

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe