Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. On the Dynamics of Large Particle Systems in the Mean Field Limit

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This course explains how the usual mean field evolution partial differential equations (PDEs) in Statistical Physics—such as the Vlasov-Poisson system, the vorticity formulation of the two-dimensional Euler equation for incompressible fluids, or the time-dependent Hartree equation in quantum mechanics—can be rigorously derived from the fundamental microscopic equations that govern the evolution of large, interacting particle systems. The emphasis is put on the mathematical methods used in these derivations, such as Dobrushin’s stability estimate in the Monge-Kantorovich distance for the empirical measures built on the solution of the N-particle motion equations in classical mechanics, or the theory of BBGKY hierarchies in the case of classical as well as quantum problems. We explain in detail how these different approaches are related; in particular we insist on the notion of chaotic sequences and on the propagation of chaos in the BBGKY hierarchy as the number of particles tends to infinity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

Illustrations of the Dynamical Theory of Gases, Philosophical Magazine (1860); reprinted in “The Scientific Papers of James Clerk Maxwell”, edited by W.D. Niven, Cambridge University Press, 1890; pp. 377–409.

 
2

For each topological space X and each finite dimensional vector space E on \(\mathbf {R}\), we designate by C(XE) the set of continuous functions defined on X with values in E, and by \(C_c(X,E)\) the set of functions belonging to C(XE) whose support is compact in X. For each \(n,k\ge 1\), we denote by \(C^k_c(\mathbf {R}^n,E)\) the set of functions of class \(C^k\) defined on \(\mathbf {R}^n\) with values in E whose support is compact in \(\mathbf {R}^n\). We also denote \(C(X):=C(X,\mathbf {R})\), \(C_c(X):=C_c(X,\mathbf {R})\) and \(C^k_c(\mathbf {R}^n):=C^k_c(\mathbf {R}^n,\mathbf {R})\).

 
3
For each \(n\ge 1\), the Schwartz class \(\fancyscript{S}(\mathbf {R}^n)\) is the set of real-valued \(C^\infty \) functions defined on \(\mathbf {R}^n\) all of whose partial derivatives are rapidly decreasing at infinity:
$$ \fancyscript{S}(\mathbf {R}^n):=\{f\in C^\infty (\mathbf {R}^n)\hbox { s.t. }|x|^m{\partial }^{\alpha }f(x)\rightarrow 0\hbox { as }|x|\rightarrow \infty \, \hbox {for all }m\ge 1\hbox { and }{\alpha }\in \mathbf {N}^n\}\, . $$
 
4
For each topological space X and each finite dimensional vector space E on \(\mathbf {R}\), we denote by \(C_b(X,E)\) the set of continuous functions defined on X with values in E that are bounded on X. For each \(n,k\ge 1\), we denote by \(C^k_b(\mathbf {R}^n,E)\) the set of functions of class \(C^k\) defined on \(\mathbf {R}^n\) with values in E all of whose partial derivatives are bounded on \(\mathbf {R}^n\): for each norm \(|\cdot |_E\) on E, one has
$$ C^k_b(\mathbf {R}^n,E):=\{f\in C^k(\mathbf {R}^n,E)\hbox { s.t. }\sup _{x\in \mathbf {R}^n}|{\partial }^{\alpha }f(x)|_E<\infty \hbox { for each }{\alpha }\in \mathbf {N}^n\}. $$
We also denote \(C_b(X):=C_b(X,\mathbf {R})\) and \(C^k_b(\mathbf {R}^n):=C^k_b(\mathbf {R}^n,\mathbf {R})\).
 
5

Henceforth, the set of Borel probability measures on \(\mathbf {R}^d\) will be denoted by \(\fancyscript{P}(\mathbf {R}^d)\).

 
6
Given two measurable spaces \((X,\fancyscript{A})\) and \((Y,\mathscr {B})\), a measurable map \({\varPhi }:\,(X,\fancyscript{A})\rightarrow (Y,\mathscr {B})\) and a measure m on \((X,\fancyscript{A})\), the push-forward of m under \({\varPhi }\) is the measure on \((Y,\mathscr {B})\) defined by the formula
$$ {\varPhi }\#m(B)=m({\varPhi }^{-1}(B)),\quad \hbox { for all }B\in \mathscr {B}. $$
 
7
We designate by \(w-\fancyscript{P}(\mathbf {R}^d)\) the set \(\fancyscript{P}(\mathbf {R}^d)\) equipped with the weak topology of probability measures, i.e. the topology defined by the family of semi-distances
$$ d_\phi (\mu ,\nu ):=\left| \int \limits _{\mathbf {R}^d}\phi (z)\mu (dz)-\int \limits _{\mathbf {R}^d}\phi (z)\nu (dz)\right| $$
as \(\phi \) runs through \(C_b(\mathbf {R}^d)\).
 
8
The reader should be aware of the following subtle point. In classical references on distribution theory, such as [57], the Dirac mass is viewed as a distribution, therefore as an object that generalizes the notion of function. There is a notion of pull-back of a distribution under a \(C^\infty \) diffeomorphism such that the pull-back of the Dirac mass at \(y_0\) with a \(C^\infty \) diffeomorphism \(\chi :\,\mathbf {R}^N\rightarrow \mathbf {R}^N\) satisfying \(\chi (x_0)=y_0\) is
$$ {\delta }_{y_0}\circ \chi =|{\text {det}}(D\chi (x_0))|^{-1}{\delta }_{x_0}. $$
This notion is not to be confused with the push-forward under \(\chi \) of the Dirac mass at \({\delta }_{x_0}\) viewed as a probability measure, which, according to the definition in the previous footnote is
$$ \chi \#{\delta }_{x_0}={\delta }_{y_0}. $$
In particular
$$ \chi \#{\delta }_{x_0}\not ={\delta }_{x_0}\circ \chi ^{-1} $$
unless \(\chi \) has Jacobian determinant 1 at \(x_0\).
 
9

Monge’s original problem was to minimize over the class of all Borel measurable transportation maps \(T:\,\mathbf {R}^d\rightarrow \mathbf {R}^d\) such that \(T\#\mu =\nu \) the transportation cost \(\int \nolimits _{\mathbf {R}^d}|x-T(x)|\mu (dx).\)

 
10

The notation \(\mathscr {L}^d\) designates the Lebesgue measure on \(\mathbf {R}^d\).

 
11

This last statement is not completely correct, as P.-L. Lions recently proposed a well defined mathematical object that would play the role of a “symmetric function of infinitely many variables that is slowly varying in each variable”: see [72] and Sect. 1.7.3.

 
12

For the case of the Boltzmann-Grad limit for a system of N hard spheres, the infinite hierarchy cannot be derived rigorously from the Liouville equation by passing to the limit in the sense of distributions in each equation of the (finite) BBGKY hierarchy: see the discussion on pp. 74–75 in [26]. The infinite Boltzmann hierarchy is derived by a different, more subtle procedure that is the core of the Lanford proof—see Sect. 4.4 in [26].

 
13

For each locally compact topological space X and each finite dimensional vector space E on \(\mathbf {R}\), we denote by \(C_0(X,E)\) the set of continuous functions on X with values in E that converge to 0 at infinity. We set \(C_0(X):=C_0(X,E)\).

 
14
For each \(n,k\ge 1\) and each finite dimensional vector space E on \(\mathbf {R}\), we denote by \(C^k_0(\mathbf {R}^n,E)\) the set of functions of class \(C^k\) defined on \(\mathbf {R}^n\) with values in E all of whose partial derivatives converge to 0 at infinity. In other words,
$$ C^k_0(\mathbf {R}^n,E):=\{f\in C^k(\mathbf {R}^n,E)\hbox { s.t. }{\partial }^{\alpha }f(x)\rightarrow 0\hbox { as }|x|\rightarrow \infty \hbox { for each }{\alpha }\in \mathbf {N}^n\}. $$
We denote \(C^k_0(\mathbf {R}^n):=C^k_0(\mathbf {R}^n,\mathbf {R})\).
 
15
Since \((\fancyscript{P}(Q),{\text {dist}}_{LP})\) is compact, any element U of \(C(\fancyscript{P}(Q))\) is bounded on \(\fancyscript{P}(Q)\), so that
$$ \sup _{\mu \in \fancyscript{P}(Q)}|U(\mu )|<\infty . $$
 
16

This normalization condition is not satisfied by “generalized eigenfunctions” of an operator with continuous spectrum. Consider the two following examples, where \({\mathfrak {H}}=L^2(\mathbf {R})\).

(a) Let \(\mathcal{H}=-\tfrac{1}{2}\frac{d^2}{dx^2}+\tfrac{1}{2}x^2\) (the quantum harmonic oscillator), which has discrete spectrum only. The sequence of eigenvalues of \(\mathcal{H}\) is \(n+\tfrac{1}{2}\) with \(n\in \mathbf {N}\). Besides \({\text {Ker}}(\mathcal{H}-(n+\tfrac{1}{2})I)=\mathbf {C}h_n\) for each \(n\in \mathbf {N}\), with
$$ h_n(x):=\frac{1}{\sqrt{2^nn!}\pi ^{1/4}}e^{-x^2/2}H_n(x),\quad \hbox { where }H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}. $$
The function \(H_n\) is the nth Hermite polynomial, and the sequence \((h_n)_{n\ge 0}\) is a Hilbert basis of \(\mathfrak {H}\). In particular one has the orthonormality condition
$$ \int \limits _\mathbf {R}h_n(x)h_m(x)dx={\delta }_{mn},\quad \hbox { for all }m,n\ge 0 $$
where \({\delta }_{mn}\) is the Kronecker symbol (i.e. \({\delta }_{mn}=0\) if \(m\not =n\) and \({\delta }_{mn}=1\) if \(m=n\)).
(b) Let \(P=-i\frac{d}{dx}\) (the momentum operator), which has continuous spectrum only. The spectrum of P is the real line \(\mathbf {R}\), and the generalized eigenfunctions of P are the functions \(e_k:\,x\mapsto e_k(x):=e^{i2\pi kx}\). For each \(k\in \mathbf {R}\), one has \(Pe_k=2\pi ke_k\) but \(e_k\notin \mathfrak {H}\). However one has the “formula” analogous to the orthonormality condition in case (a):
$$ \int \limits _{\mathbf {R}}\overline{e_k(x)}e_l(x)dx={\delta }_0(k-l) $$
where \({\delta }_0\) is the Dirac mass at the origin. The integrand on the left hand side of the equality above is not an element of \(L^1(\mathbf {R})\), and the integral is not a Lebesgue integral. The identity above should be understood as the Fourier inversion formula on the class \(\fancyscript{S}'(\mathbf {R})\) of tempered distributions on the real line \(\mathbf {R}\).

In the case (a), if the system is in an eigenstate corresponding with the eigenvalue \(n+\tfrac{1}{2}\) of the operator \(\mathcal{H}\), its wave function is of the form \(\psi ={\omega }h_n\) with \(|{\omega }|=1\), so that \(\Vert \psi \Vert _{\mathfrak {H}}=1\).

In the case (b), if the system is in an eigenstate corresponding with the element k of the spectrum of the operator P, it cannot be described by any wave function in \(\mathfrak {H}\), but only by a generalized eigenfunction of P, that does not belong to \(\mathfrak {H}\).

In the discussion below, we shall never consider quantum states described by generalized eigenfunctions as in (b), but only quantum states corresponding with normalized wave functions.

 
17
A mild solution of the Cauchy problem
$$ \left\{ \begin{aligned}{}&\dot{u}(t)=Au(t)+F[u(t)], \\&u{\big |}_{t=0}=u^{in}, \end{aligned}\right. $$
where A generates a strongly continuous contraction semigroup on a Banach space X and \(F:\,X\rightarrow X\) is a continuous map, is an X-valued continuous function \(I\ni t\mapsto u(t)\in X\) defined on \(I=[0,\tau ]\) with \(\tau \in [0,+\infty ]\) that is a solution of the integral equation
$$ u(t)=e^{tA}u^{in}+\int \limits _0^te^{(t-s)A}F[u(s)]ds $$
for each \(t\in I\).
 
18

For linear operators AB on the Hilbert space \(\mathfrak {H}\), we designate by [AB] their commutator in other words \([A,B]:=AB-BA\). There is obviously a difficulty with the domain of [AB] viewed as an unbounded operator on \(\mathfrak {H}\) if A and B are unbounded operators on \(\mathfrak {H}\). This difficulty will be deliberately left aside, as we shall mostly consider \(B\mapsto [A,B]\) as an unbounded operator on \(\fancyscript{L}(\mathfrak {H})\), which is different matter.

 
19
For each topological space X and each vector space E on \(\mathbf {R}\) equipped with the norm \(\Vert \cdot \Vert _E\), we designate by C(XE) the set of continuous maps from X to E, and we denote
$$ C_b(X,E):=\{f\in C(X,E)\hbox { s.t. }\sup _{x\in X}\Vert f(x)\Vert _E<\infty \}. $$
In other words, \(C_b(X,E)\) is the set of bounded continuous functions defined on X with values in E.
 
20

The BBGKY hierarchy has been derived from the N-particle Schrödinger equation in the case where the potential V belongs to \(L^\infty (\mathbf {R}^d)\)—see Theorem 1.10.1. However its validity in the sense of distributions under the assumptions of Theorem 1.10.2 results from the same arguments as those used in the derivation of the infinite hierarchy and presented below.

 
21

This problem was mentioned to me by M. Pulvirenti in October 2013.

 
22

After completion of these lecture notes, there has been some progress on this problem: see [45, 47]. Earlier results on this problem can be also found in [50] and in [85].

 
Literatur
  1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic NLSE in dimension one. Asymptot. Anal. 40, 93–108 (2004)MATHMathSciNet
  2. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1193–1220 (2007)MATHMathSciNetView Article
  3. Ahlfors, L.V.: Complex analysis. An introduction to the theory of analytic functions of onecomplex variable, 3rd edn. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York (1978)
  4. Bardos, C., Catto, I., Mauser, N., Trabelsi, S.: Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations. Arch. Ration. Mech. Anal. 198, 273–330 (2010)MATHMathSciNetView Article
  5. Bardos, C., Ducomet, B., Golse, F., Gottlieb, A., Mauser, N.: The TDHF approximation for Hamiltonians with \(m\)-particle interaction potentials. Commun. Math. Sci. suppl. 1, 1–9 (2007)MATHMathSciNetView Article
  6. Bardos, C., Erdös, L., Golse, F., Mauser, N., Yau, H.-T.: Derivation of the Schrödinger-Poisson equation from the quantum \(N\)-body problem. C. R. Math. Acad. Sci. Paris 334, 515–520 (2002)MATHMathSciNetView Article
  7. Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the \(N\) particles Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000)MATHMathSciNet
  8. Bardos, C., Golse, F., Gottlieb, A., Mauser, N.: Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. de Math. Pures et Appl. 82, 665–683 (2003)MATHMathSciNetView Article
  9. Bardos, C., Golse, F., Gottlieb, A., Mauser, N.: Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states. J. Stat. Phys. 115, 1037–1055 (2004)MATHMathSciNetView Article
  10. Bardos, C., Golse, F., Gottlieb, A., Mauser, N.: On the derivation of nonlinear Schrödinger and Vlasov equations. In: Dispersive Transport Equations and Multiscale Models. Minneapolis, MN (2000), pp. 1–23. IMA Vol. Math. Appl. 136, Springer, New York, NY (2004)
  11. Bardos, C., Mauser, N.: One particle equations for many particle quantum systems: the MCTHDF method. Quart. Appl. Math. 68, 43–59 (2010)MATHMathSciNetView Article
  12. Basdevant, J.-L., Dalibard, J.: Quant. Mech. Springer, Berlin (2005)
  13. Batt, J.: \(N\)-particle approximation to the nonlinear vlasov-poisson system. Nonlin. Anal. 47, 1445–1456 (2000)MathSciNetView Article
  14. Billingsley, J.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)MATHView Article
  15. Bouchut, F., Golse, F., Pallard, C.: On classical solutions of the 3D Vlasov-Maxwell system: a simplified proof of the Glassey-Strauss theorem. Arch. Rational Mech. Anal. 170, 1–15 (2003)MATHMathSciNetView Article
  16. Bouchut, F., Golse, F., Pallard, C.: Nonresonant smoothing for coupled wave + transport equations; applications to the Vlasov-Maxwell system. Rev. Mat. Iberoamericana 20, 865–892 (2004)MATHMathSciNetView Article
  17. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic equations and asymptotic theory. Edited and with a foreword by L. Desvillettes et B. Perthame. Gauthier-Villars, Editions Scientifiques et Médicales Elsevier, Paris (2000)
  18. Bove, A., DaPrato, G., Fano, G.: An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)MATHMathSciNetView Article
  19. Bove, A., DaPrato, G., Fano, G.: On the Hartree-Fock time-dependent problem. Commun. Math. Phys. 49, 25–33 (1976)MathSciNetView Article
  20. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)MATHMathSciNetView Article
  21. Breiman, L.: Probability. Addison Wesley, Reading (1968)MATH
  22. Brezis, H.: Analyse fonctionnelle. Théorie et Applications. Masson, Paris (1987)
  23. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)MATHMathSciNetView Article
  24. Cancès, E., Le Bris, C.: On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics. Math. Models Methods Appl. Sci. 9, 963–990 (1999)MATHMathSciNetView Article
  25. Cercignani, C.: On the Boltzmann equation for rigid spheres. Transport Theory Statist. Phys. 2, 211–225 (1972)MATHMathSciNetView Article
  26. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Appl. Math. Sci. 106 Springer-Verlag, New York, NY (1994)
  27. Chadam, J.M., Glassey, R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122–1130 (1975)MATHMathSciNetView Article
  28. Cottet, G.-H., Raviart, P.-A.: On particle-in-cells methods for the Vlasov-Poisson equations. Transp. Theory Stat. Phys. 15, 1–31 (1986)MathSciNetView Article
  29. Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13, 115–123 (1979)MATHMathSciNetView Article
  30. Elgart, A., Erdös, L., Schlein, B., Yau, H.-T.: Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179, 265–283 (2006)MATHMathSciNetView Article
  31. Elskens, Y., Kießling, M.K.-H., Ricci, V.: The Vlasov limit for a system of particles which interact with a wave field. Commun. Math. Phys. 285, 673–712 (2009)MATHView Article
  32. Erdös, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)MATHMathSciNet
  33. Erdös, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)MATHMathSciNetView Article
  34. Erdös, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. 2(172), 291–370 (2010)View Article
  35. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 1023–1059 (2009)MATHView Article
  36. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145, 23–50 (2011)MATHMathSciNetView Article
  37. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard sphere and short range potentials. Eur. Math. Soc., Zürich, Zürich Lectures in Advanced Mathematics (2013)
  38. Gérard, P.: Equations de champ moyen pour la dynamique quantique d’un grand nombre de particules (d’après Bardos, Erdös, Golse, Gottlieb, Mauser, Yau). Séminaire Bourbaki. Vol. 2003/2004. Astérisque 299, Exp. no. 930, 147–164 (2005)
  39. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with nonlocal interactions. Math. Z. 170, 109–145 (1980)MATHMathSciNetView Article
  40. Ginibre, J., Velo, G.: The classical field limits of scattering field theory for non-relativistic many-boson systems 1 & 2. Commun. Math. Phys. 66, 37–76 and 68, 45–68 (1979)
  41. Glassey, R.T.: The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)MATHView Article
  42. Göll, M., Verbitskiy, E.: Homoclinic points of principal algebraic actions. This contribution
  43. Golse, F.: The mean-field limit for the dynamics of large particle systems. Journées Equations aux Dérivées Partielles (Forges-les-Eaux), Exp. no. 9, Univ. de Nantes, Nantes (2003)
  44. Golse, F.: The mean-field limit for a regularized Vlasov-Maxwell dynamics. Commun. Math. Phys. 310, 789–816 (2012)MATHMathSciNetView Article
  45. Golse, F., Mouhot, C., Paul, T.: On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. to appear. arXiv:​1502.​06143
  46. Golse, F., Mouhot, C., Ricci, V.: Empirical measures and mean field hierarchies. Kinet. Relat. Models 6, 919–943 (2013)MATHMathSciNetView Article
  47. Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. preprint arXiv:​1510.​06681
  48. Goodman, J., Hou, T., Lowengrub, J.: Convergence of the point vortex method for the 2-D Euler equations. Comm. Pure Appl. Math. 43, 415–430 (1990)MATHMathSciNetView Article
  49. Goodman, J., Hou, T.: New stability estimates for the 2-D vortex method. Commun. Pure Appl. Math. 44, 1015–1031 (1991)MATHMathSciNetView Article
  50. Graffi, S., Martinez, A., Pulvirenti, M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13, 59–73 (2003)
  51. Grünbaum, F.A.: Propagation of chaos for the Boltzmann equation. Arch. Rat. Mech. Anal. 42, 323–345 (1971)MATHView Article
  52. Hauray, M.: Wasserstein distances for vortices approximation of Euler-type equations. Math. Models Methods Appl. Sci. 19, 1357–1384 (2009)MATHMathSciNetView Article
  53. Hauray, M., Jabin, P.-E.: \(N\)-particle approximation of the Vlasov equations with singular potential. Arch. Rational Mech. Anal. 183, 489–524 (2007)MATHMathSciNetView Article
  54. Hauray, M., Jabin, P.-E.: Propagation of chaos for particle approximations of Vlasov equations with singular forces. Ann. Sci. Ecole Normale Sup. 48, 891–940 (2015)
  55. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)MathSciNetView Article
  56. Hewitt, E., Savage, L.J.: Symmetric measures on cartesian products. Trans. Amer. Math. Soc. 80, 470–501 (1955)MATHMathSciNetView Article
  57. Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer, Berlin (2003)
  58. Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Classics in Mathematics. Springer, Berlin (2007)
  59. Hörmander, L.: The analysis of linear partial differential operators. IV. Fourier integral operators. Classics in Mathematics. Springer, Berlin (2009)
  60. Hörmander, L.: Lectures on nonlinear hyperbolic differential equations. Mathématiques and Applications, vol. 26. Springer, Berlin (1997)
  61. Horowitz, J., Karandikar, R.: Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55, 261–273 (1994)MATHMathSciNetView Article
  62. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley and Los Angeles, CA (1956)
  63. Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Amer. Math. Soc. 70, 195–211 (1951)MATHMathSciNet
  64. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995)
  65. Kießling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)MATHView Article
  66. Klainerman, S., Machedon, M.: On the uniqueness of solutions to the Gross-Pitaevskii Hierarchy. Commun. Math. Phys. 279, 169–185 (2008)MATHMathSciNetView Article
  67. Knowles, P., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–138 (2010)MATHMathSciNetView Article
  68. Krylov, N.S.: Works on the Foundations of Statistical Physics. Princeton University Press, Princeton (1979)
  69. Landau, L.D., Lifshitz, E.M.: Quantum mechanics: non-relativistic theory. Course of Theoretical Physics, vol. 3. Translated from the Russian by J.B. Sykes, J.S. Bell. Addison-Wesley Series in Advanced Physics. Addison-Wesley Publishing Co., Inc, Reading, MA (1958)
  70. Lanford, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974). Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)
  71. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)MathSciNetView Article
  72. Lions, P.-L.: Mean field games. Course at the Collège de France, 2007–2008. Summary of the course and video of the lectures of November 9 and 16, 2007. http://​www.​college-de-france.​fr/​site/​pierre-louis-lions/​
  73. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)MATHMathSciNetView Article
  74. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 9(86), 68–79 (2006)MathSciNetView Article
  75. Malliavin, P., Airault, H., Kay, L., Letac, G.: Integration and probability. Graduate Texts in Mathematics. Springer, New York (1995)
  76. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)MATHView Article
  77. Mielke, A.: On evolutionary \(\Gamma \)-convergence for gradient systems. This contribution
  78. Mischler, S., Mouhot, C.: Kacs program in kinetic theory. Invent. Math. 193, 1–147 (2013)
  79. Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Related Fields 161, 1–59 (2015)
  80. Narnhoffer, H., Sewell, G.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)View Article
  81. Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. Lecture Notes in Mathematics, vol. 395, pp. 275–290. Springer, Berlin (1974)
  82. Nirenberg, L.: An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry 6, 561–576 (1972)MATHMathSciNet
  83. Nishida, T.: A note on a theorem of Nirenberg. J. Diff. Geometry 12, 629–633 (1977)MATHMathSciNet
  84. Ovcyannikov, L.V.: A nonlinear Cauchy problem in a scale of Banach spaces. (Russian). Dokl. Akad. Nauk SSSR 200, 789–792 (1971)MathSciNet
  85. Pezzoti, F., Pulvirenti, M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. Henri Poincaré 10, 145–187 (2009)
  86. Pfaffelmoser, K.: Global classical soutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eq. 95, 281–303 (1992)MATHMathSciNetView Article
  87. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97, 151–164 (2011)MATHMathSciNetView Article
  88. Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140, 76–89 (2010)MATHMathSciNetView Article
  89. Rachev, S., Rüschendorf, L.: Mass transportation problems, vol. I. Theory. Probability and its Applications. Springer, New York (1998)
  90. Rein, G.: Global weak solutions of the relativistic Vlasov-Maxwell system revisited. Commun. Math. Sci. 2, 145–158 (2004)MATHMathSciNetView Article
  91. Rein, G.: Collisionless kinetic equations from astrophysicsthe Vlasov-Poisson system. In: Handbook of differential equations: evolutionary equations, vol. III, pp. 383–476. Handb. Differ. Eqn. Elsevier/North-Holland, Amsterdam (2007)
  92. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291, 31–61 (2009)MATHMathSciNetView Article
  93. Scardia, L.: Continuum limits of discrete models by \(\Gamma \)-convergence. This contribution
  94. Schochet, S.: The point-vortex method for periodic weak solutions of the 2-D Euler equations. Commun. Pure Appl. Math. 49, 911–965 (1996)MATHMathSciNetView Article
  95. Shatah, J., Struwe, M.: Geometric wave equations. Courant Lecture Notes in Mathematics, 2. American Mathematical Society, Providence, RI (1998)
  96. Spohn, H.: Kinetic equations from hamiltonian dynamics. Rev. Mod. Phys. 52, 600–640 (1980)MathSciNetView Article
  97. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)MATHMathSciNetView Article
  98. Spohn, H.: Large scale dynamics of interacting particles. Springer, London (2012)
  99. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (2006)MATH
  100. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’été de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)
  101. Ukai, S.: The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem. In: Recent topics in mathematics moving toward science and engineering. Japan J. Indust. Appl. Math. 18, 383–392 (2001)
  102. Ukai, S., Okabe, T.: On classical solutions in the large in time of two dimensional Vlasov’s equation. Osaka J. Math. 15, 245–261 (1978)MATHMathSciNet
  103. Villani, C.: Topics in Optimal Transportation. American Math. Soc, Providence RI (2003)MATHView Article
  104. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)View Article
  105. Wollman, S.: On the approximation of the Vlasov-Poisson system by particle methods. SIAM J. Numer. Anal. 37, 1369–1398 (2000)MATHMathSciNetView Article
Metadaten
Titel
On the Dynamics of Large Particle Systems in the Mean Field Limit
verfasst von
François Golse
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26883-5_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.