Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers

verfasst von: Naim Tuglu, Can Kızılateş

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In this paper, we study norms of circulant and r-circulant matrices involving harmonic Fibonacci and hyperharmonic Fibonacci numbers. We obtain inequalities by using matrix norms.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each of the authors, NT, and CK, contributed to each part of this work equally and read and approved the final version of the manuscript.

1 Introduction

The circulant and r-circulant matrices have a connection to signal processing, probability, numerical analysis, coding theory, and many other areas. An \(n\times n\) matrix \(C_{r}\) is called an r-circulant matrix defined as follows:
$$ C_{r}= \begin{pmatrix} c_{0} & c_{1} & c_{2} & \cdots& c_{n-2} & c_{n-1} \\ rc_{n-1} & c_{0} & c_{1} & \cdots& c_{n-3} & c_{n-2} \\ rc_{n-2} & rc_{n-1} & c_{0} & \cdots& c_{n-4} & c_{n-3} \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ rc_{1} & rc_{2} & rc_{3} & \cdots& rc_{n-1} & c_{0} \end{pmatrix}. $$
Since the matrix \(C_{r}\) is determined by its row elements and r, we denote \(C_{r}=\operatorname{Circ}(c_{0},c_{1},c_{2}, \ldots,c_{n-1})\). In particular for \(r=1\)
$$ C= \begin{pmatrix} c_{0} & c_{1} & c_{2} & \cdots& c_{n-2} & c_{n-1} \\ c_{n-1} & c_{0} & c_{1} & \cdots& c_{n-3} & c_{n-2} \\ c_{n-2} & c_{n-1} & c_{0} & \cdots& c_{n-4} & c_{n-3} \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ c_{1} & c_{2} & c_{3} & \cdots& c_{n-1} & c_{0} \end{pmatrix} $$
is called a circulant matrix and we denote it for brevity by \(C=\operatorname{Circ}(c_{0},c_{1},c_{2},\ldots,c_{n-1})\). The eigenvalues of C are
$$ \lambda_{j}=\sum_{i=0}^{n-1}c_{i} \bigl(w^{j}\bigr)^{i}, $$
(1)
where \(w=e^{\frac{2\pi i}{n}}\) and \(i=\sqrt{-1}\).
Many authors have investigated the norms of circulant and r-circulant matrices. In [1], Solak studied the lower and upper bounds for the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries. In [2], Kocer et al. obtained norms of circulant and semicirculant matrices with Horadams numbers. In [3], Zhou et al. gave the spectral norms of circulant-type matrices involving binomial coefficients and harmonic numbers. In [4], Zhou calculated spectral norms for circulant matrices with binomial coefficients combined with Fibonacci and Lucas number entries. In [5], Shen and Cen have given upper and lower bounds for the spectral norms of r-circulant matrices with classical Fibonacci and Lucas number entries. In [6], Bahşı and Solak computed the spectral norms of circulant and r-circulant matrices with the hyper-Fibonacci and hyper-Lucas numbers. In [7], Jiang and Zhou studied spectral norms of even-order r-circulant matrices.
Motivated by the above papers, we compute the spectral norms and Euclidean norm of circulant and r-circulant matrices with the harmonic and hyperharmonic Fibonacci entries. The scheme of this paper is as follows. In Section 2, we present some definitions, preliminaries, and lemmas related to our study. In Section 3, we calculate spectral norms of circulant matrix with harmonic Fibonacci entries. Moreover, we obtain the Euclidean norms of r-circulant matrices and give lower and upper bounds for the spectral norms of r-circulant matrices with harmonic and hyperharmonic Fibonacci entries.

2 Preliminaries

The Fibonacci numbers \(F_{n}\) are defined by the following recurrence relation for \(n\geq1\):
$$ F_{n+1}=F_{n}+F_{n-1}, $$
where \(F_{0}=0\), \(F_{1}=1\). In [8], the authors investigated the finite sum of the reciprocals of Fibonacci numbers,
$$ \mathbb{F}_{n}=\sum_{k=1}^{n} \frac{1}{F_{k}}, $$
which are called harmonic Fibonacci numbers. Then they gave a combinatoric identity related to harmonic Fibonacci numbers as follows:
$$ \sum_{k=0}^{n-1}F_{k-1} \mathbb{F}_{k}=F_{n}\mathbb{F}_{n}-n. $$
(2)
Moreover, in [8], they defined hyperharmonic Fibonacci numbers for \(n,r\geq1\)
$$ \mathbb{F}_{n}^{(r)}=\sum_{k=1}^{n} \mathbb{F}_{k}^{(r-1)}, $$
where \(\mathbb{F}_{n}^{(0)}=\frac{1}{F_{n}}\) and \(\mathbb{F}_{0}=0\). At this point, we give some definitions and lemmas related to our study.
Definition 1
Let \(A=(a_{ij})\) be any \(m\times n\) matrix. The Euclidean norm of matrix A is
$$ \Vert A\Vert _{E}=\sqrt{ \Biggl(\sum _{i=1}^{m}\sum_{j=1}^{n} \vert a_{ij}\vert ^{2} \Biggr)}. $$
Definition 2
Let \(A=(a_{ij})\) be any \(m\times n\) matrix. The spectral norm of matrix A is
$$ \Vert A\Vert _{2}=\sqrt{\max_{1\leq i\leq n} \lambda_{i}\bigl(A^{H}A\bigr)}, $$
where \(\lambda_{i}(A^{H}A)\) is an eigenvalue of \(A^{H}A\) and \(A^{H}\) is the conjugate transpose of matrix A.
Then the following inequalities hold for the Euclidean norm and the spectral norm:
$$\begin{aligned}& \frac{1}{\sqrt{n}}\Vert A\Vert _{E}\leq \Vert A\Vert _{2}\leq \Vert A\Vert _{E}, \end{aligned}$$
(3)
$$\begin{aligned}& \Vert A\Vert _{2}\leq \Vert A\Vert _{E}\leq\sqrt {n}\Vert A\Vert _{2}. \end{aligned}$$
(4)
Lemma 1
[9]
Let A and B be two \(m\times n\) matrices. Then we have
$$ \Vert A\circ B\Vert _{2}\leq \Vert A\Vert _{2} \Vert B\Vert _{2}, $$
where \(A\circ B\) is the Hadamard product of A and B.
Lemma 2
[9]
Let A and B be two \(n\times m\) matrices. We have
$$ \Vert A\circ B\Vert _{2}\leq r_{1}(A)c_{1}(B), $$
where
$$\begin{aligned}& r_{1}(A)=\max_{1\leq i\leq m}\sqrt{\sum _{j=1}^{n}\vert a_{ij}\vert ^{2}},\\& c_{1}(B)=\max_{1\leq j\leq n}\sqrt{\sum _{i=1}^{m}\vert b_{ij}\vert ^{2}}. \end{aligned}$$
Definition 3
[10]
The difference operator of \(f(x)\) is defined as
$$ \Delta f(x)=f(x+1)-f(x). $$
Definition 4
[10]
A function \(f(x)\) with the property that \(\Delta f(x)=g(x)\) is called the anti-difference operator of \(g(x)\).
Lemma 3
[10]
If \(\Delta f(x)=g(x)\), then
$$ \sum_{a}^{b}g(x)\delta_{x}= \sum_{x=a}^{b-1}g(x)=f(b)-f(a). $$
Lemma 4
[10]
We have
$$ \sum_{a}^{b}u(x)\Delta v(x) \delta_{x}= u(x)v(x)| _{a}^{b+1}-\sum _{a}^{b}v(x+1)\Delta u(x) \delta_{x}. $$
(5)
Lemma 5
[10]
For \(m\neq-1\) we have
$$ \sum x^{\underline{m}}\delta_{x}=\frac{x^{\underline{m+1}}}{m+1}, $$
where \(x^{\underline{m}}=x(x-1)(x-2)\cdots(x-m+1)\).

3 Main results

Theorem 1
[8]
Let \(C_{1}=\operatorname{Circ}(\mathbb{F}_{0},\mathbb {F}_{1},\mathbb{F}_{2},\ldots, \mathbb{F}_{n-1})\) be an \(n\times n\) circulant matrix. The spectral norm of \(C_{1}\) is
$$ \Vert C_{1}\Vert _{2}=n\mathbb{F}_{n}-\sum _{k=0}^{n-1}\frac {k+1}{F_{k+1}}. $$
Theorem 2
[8]
Let \(C^{(k)}=\operatorname{Circ}(\mathbb{F}_{0}^{(k)},\mathbb {F}_{1}^{(k)},\mathbb{F}_{2}^{(k)},\ldots,\mathbb{F}_{n-1}^{(k)})\) be an \(n\times n\) circulant matrix. The spectral norm of \(C^{(k)}\) is
$$ \bigl\Vert C^{(k)}\bigr\Vert _{2}=\mathbb{F}_{n-1}^{(k+1)}. $$
Theorem 3
Let
$$ C=\operatorname{Circ}(F_{-1}\mathbb{F}_{0},F_{0} \mathbb{F}_{1},\ldots ,F_{n-2}\mathbb{F}_{n-1}) $$
(6)
be an \(n\times n\) circulant matrix. Then the spectral norm of the matrix C is
$$ \Vert C\Vert _{2}=F_{n}\mathbb{F}_{n}-n. $$
Proof
Since C is a circulant matrix, from (1), for all \(t=0,1,\ldots,s-1\),
$$ \lambda_{t}(C)=\sum_{i=0}^{s-1}F_{i-1} \mathbb{F}_{i}\bigl(w^{t}\bigr)^{i}. $$
Then, for \(t=0\),
$$ \lambda_{0}(C)=\sum_{i=0}^{s-1}F_{i-1} \mathbb{F}_{i} $$
(7)
and from (2), \(\lambda_{0}(C)=F_{n}\mathbb{F}_{n}-n\). Hence, for \(1\leq m\leq n-1\), we have
$$ \vert \lambda_{m}\vert =\Biggl\vert \sum _{i=0}^{s-1}F_{i-1}\mathbb{F}_{i} \bigl(w^{t}\bigr)^{i}\Biggr\vert \leq\Biggl\vert \sum _{i=0}^{s-1}F_{i-1} \mathbb{F}_{i}\Biggr\vert \bigl\vert \bigl(w^{t} \bigr)^{i}\bigr\vert \leq\sum_{i=0}^{s-1}F_{i-1} \mathbb {F}_{i}. $$
(8)
Since C is a normal matrix, we have
$$ \Vert C\Vert _{2}=\max_{0\leq m\leq n-1}\vert \lambda _{m}\vert . $$
(9)
From (7), (8), (9), and (2), we have
$$ \Vert C\Vert _{2}=F_{n}\mathbb{F}_{n}-n. $$
 □
Corollary 1
We have
$$ \sqrt{\sum_{k=0}^{n-1}F_{k-1}^{2} \mathbb{F}_{n}^{2}}\leq F_{n} \mathbb{F}_{n}-n \leq\sqrt{n\sum_{k=0}^{n-1}F_{k-1}^{2} \mathbb {F} _{n}^{2}}. $$
Proof
The proof is trivial from Definition 1 and the relation between the Euclidean norm and the spectral norm in (3). □
Theorem 4
Let
$$ C_{r}^{(k)}=\operatorname{Circ}\bigl(\mathbb{F}_{0}^{(k)}, \mathbb {F}_{1}^{(k)},\ldots, \mathbb{F}_{n-1}^{(k)} \bigr) $$
(10)
be an \(n\times n\) r-circulant matrix. The Euclidean norm of \(C_{r}^{(k)}\) is
$$\begin{aligned} \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E}={}& \Biggl[ \frac{n}{2} \bigl( n+1+(n-1)\vert r\vert ^{2} \bigr) \bigl( \mathbb{F} _{n}^{(k)} \bigr) ^{2}\\ &{}-\frac{1}{2}\sum_{s=0}^{n-1}(s+1) \bigl( 2n+s\bigl(\vert r\vert ^{2}-1\bigr) \bigr) \bigl( \mathbb{F}_{s+1}^{(k-1)}+2 \mathbb{F}_{s}^{(k)} \bigr)\mathbb{F}_{s+1}^{(k-1)} \Biggr] ^{\frac{1}{2}}. \end{aligned}$$
Proof
From the definition of the Euclidean norm we have
$$\begin{aligned} \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E} =& \Biggl[ \sum_{s=0}^{n-1}(n-s) \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}+\sum _{s=0}^{n-1}s\vert r\vert ^{2} \bigl( \mathbb {F}_{s}^{(k)} \bigr) ^{2} \Biggr] ^{\frac{1}{2}} \\ =& \Biggl[ \sum_{s=0}^{n-1}\bigl(n+s\bigl( \vert r\vert ^{2}-1\bigr)\bigr) \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2} \Biggr] ^{\frac{1}{2}}. \end{aligned}$$
Now we will use the property of the difference operator in Lemma 4. Let \(u(s)= ( \mathbb{F}_{s}^{(k)} ) ^{2}\) and \(\Delta v(s)=n+s(\vert r\vert ^{2}-1)\). Then using the definition of the hyperharmonic Fibonacci numbers we obtain \(\Delta u(s)=\mathbb{F} _{s+1}^{(k-1)}(\mathbb{F}_{s+1}^{(k-1)}+2\mathbb {F}_{s}^{(k)})\) and \(v(s)=ns+\frac{s^{\underline{2}}}{2}(\vert r\vert ^{2}-1)\). By using (5), we have
$$\begin{aligned} \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E}={}& \Biggl[ \frac{n}{2} \bigl(n+1+(n-1)\vert r\vert ^{2} \bigr) \bigl( \mathbb {F}_{n}^{(k)} \bigr)^{2}\\ &{}-\frac{1}{2}\sum_{s=0}^{n-1}(s+1) \bigl(2n+s\bigl(\vert r\vert ^{2}-1\bigr) \bigr) \bigl(\mathbb {F}_{s+1}^{(k-1)}+2\mathbb{F}_{s}^{(k)}\bigr) \mathbb{F}_{s+1}^{(k-1)} \Biggr] ^{\frac{1}{2}}. \end{aligned}$$
 □
Corollary 2
Let \(C_{r}=\operatorname{Circ}(\mathbb{F}_{0},\mathbb{F}_{1},\ldots ,\mathbb{F}_{n-1})\) be an \(n\times n\) r-circulant matrix. The Euclidean norm of \(C_{r}\) is
$$\begin{aligned} \Vert C_{r}\Vert _{E}={}& \Biggl[ \biggl( n^{2}+\frac {n^{\underline{2}}}{2}\bigl(\vert r\vert ^{2}-1\bigr) \biggr) \mathbb {F}_{n}^{2}\\ &{}-\sum _{s=0}^{n-1} \biggl(n(s+1)+\frac {(s+1)^{{\underline{2}}}}{2}\bigl( \vert r\vert ^{2}-1\bigr) \biggr) \biggl( 2\mathbb{F}_{s}+ \frac{1}{F_{s+1}} \biggr) \frac{1}{F_{s+1}} \Biggr] ^{\frac{1}{2}}. \end{aligned}$$
Proof
It is clear that the proof can be completed if we take \(k=1\) in Theorem 4. □
Corollary 3
[8]
Let \(C_{1}=\operatorname{Circ}(\mathbb{F}_{0},\mathbb {F}_{1},\ldots,\mathbb{F}_{n-1})\) be an \(n\times n\) matrix. The Euclidean norm is
$$ \Vert C_{1}\Vert _{E}= \Biggl[ n^{2} \mathbb{F}_{n}^{2}-n\sum_{k=0}^{n-1} \frac{k+1}{F_{k+1}} \biggl( 2\mathbb{F}_{k}+\frac {1}{F_{k+1}} \biggr) \Biggr] ^{\frac{1}{2}}. $$
Proof
It is easily seen that the proof can be completed if we take \(k=r=1\) in Theorem 4. □
Now we give upper and lower bounds for the spectral norms of r-circulant matrices.
Theorem 5
Let \(C_{r}^{(k)}=\operatorname{Circ}(\mathbb{F}_{0}^{(k)},\mathbb {F}_{1}^{(k)},\ldots,\mathbb{F}_{n-1}^{(k)})\) be an \(n\times n\) r-circulant matrix.
(i)
If \(\vert r\vert \geq1\), then
$$ \frac{1}{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq\bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq \vert r\vert \sqrt{n-1} \mathbb{F}_{n-1}^{(k+1)}. $$
 
(ii)
If \(\vert r\vert <1\), then
$$ \frac{\vert r\vert }{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq \bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq\sqrt{n-1} \mathbb{F}_{n-1}^{(k+1)}. $$
 
Proof
Since we have the matrix
$$ C_{r}^{(k)}= \begin{pmatrix} \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \mathbb{F}_{2}^{(k)} & \cdots& \mathbb{F}_{n-2}^{(k)} & \mathbb{F}_{n-1}^{(k)} \\ r\mathbb{F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \cdots & \mathbb{F}_{n-3}^{(k)} & \mathbb{F}_{n-2}^{(k)} \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ r\mathbb{F}_{2}^{(k)} & r\mathbb {F}_{3}^{(k)} & r\mathbb{F}_{4}^{(k)} & \cdots& \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} \\ r\mathbb{F}_{1}^{(k)} & r\mathbb{F}_{2}^{(k)} & r\mathbb{F}_{3}^{(k)} & \cdots& r\mathbb{F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} \end{pmatrix} , $$
we have
$$ \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E}=\sqrt {\sum_{s=0}^{n-1}(n-s) \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}+\sum _{s=0}^{n-1}s\vert r\vert ^{2} \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}}. $$
(i) In [8], for the sum of the squares of hyperharmonic Fibonacci numbers, we have
$$ \frac{1}{\sqrt{n}}\mathbb{F}_{n-1}^{(r+1)}\leq\sqrt{\sum _{k=0}^{n-1} \bigl( \mathbb{F}_{k}^{(r)} \bigr) ^{2}}\leq\mathbb {F}_{n-1}^{(r+1)}. $$
(11)
Since \(\vert r\vert \geq1\) and by (11), we have
$$ \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E}\geq \sqrt{\sum_{s=0}^{n-1}(n-s) \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}+\sum _{s=0}^{n-1}s \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}}\geq\sqrt{n\sum_{s=0}^{n-1} \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}}\geq \mathbb {F}_{n-1}^{(k+1)}. $$
From (3)
$$ \frac{1}{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq\bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}. $$
On the other hand, let the matrices A and B be defined by
$$ A= \begin{pmatrix} \mathbb{F}_{0}^{(k)} & 1 & 1 & \cdots& 1 & 1 \\ r & \mathbb {F}_{0}^{(k)} & 1 & \cdots& 1 & 1 \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ r & r & r & \cdots& \mathbb{F}_{0}^{(k)} & 1 \\ r & r & r & \cdots& r & \mathbb{F}_{0}^{(k)} \end{pmatrix} $$
and
$$ B= \begin{pmatrix} \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \mathbb{F}_{2}^{(k)} & \cdots& \mathbb{F}_{n-2}^{(k)} & \mathbb{F}_{n-1}^{(k)} \\ \mathbb{F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \cdots & \mathbb{F}_{n-3}^{(k)} & \mathbb{F}_{n-2}^{(k)} \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ \mathbb{F}_{2}^{(k)} & \mathbb {F}_{3}^{(k)} & \mathbb{F}_{4}^{(k)} & \cdots& \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} \\ \mathbb{F}_{1}^{(k)} & \mathbb{F}_{2}^{(k)} & \mathbb{F}_{3}^{(k)} & \cdots& \mathbb{F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} \end{pmatrix} . $$
That is, \(C_{r}^{(k)}=A\circ B\). Then we obtain
$$ r_{1}(A)=\max_{1\leq i\leq n}\sqrt{\sum _{j=1}^{n}\vert a_{ij}\vert ^{2}}=\sqrt{\sum_{j=1}^{n} \vert a_{nj}\vert ^{2}}=\sqrt{( n-1) \vert r\vert ^{2}} $$
and
$$ c_{1}(B)=\max_{1\leq j\leq n}\sqrt{\sum _{i=1}^{n}\vert b_{ij}\vert ^{2}}=\sqrt{\sum_{i=1}^{n} \vert b_{in}\vert ^{2}}=\sqrt{\sum _{s=0}^{n-1} \bigl( \mathbb {F}_{s}^{(k)} \bigr) ^{2}}. $$
Hence, from (11) and Lemma 1, we have
$$ \bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq \vert r\vert \sqrt{ n-1} \mathbb{F}_{n-1}^{(k+1)}. $$
Thus, we have
$$ \frac{1}{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq\bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq \vert r\vert \sqrt{ n-1} \mathbb{F}_{n-1}^{(k+1)} . $$
(ii) From \(\vert r\vert <1\) and from (11), we have
$$\begin{aligned} \bigl\Vert C_{r}^{(k)}\bigr\Vert _{E} =& \sqrt{\sum_{s=0}^{n-1}(n-s) \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}+\sum _{s=0}^{n-1}s\vert r\vert ^{2} \bigl( \mathbb {F}_{s}^{(k)} \bigr) ^{2}} \\ \geq&\sqrt{\sum_{s=0}^{n-1}(n-s) \vert r\vert ^{2} \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}+\sum_{s=0}^{n-1}s\vert r\vert ^{2} \bigl(\mathbb {F}_{s}^{(k)} \bigr) ^{2}} \\ =&\vert r\vert \sqrt{n\sum_{s=0}^{n-1} \bigl( \mathbb{F}_{s}^{(k)} \bigr) ^{2}} \\ \geq&\vert r\vert \mathbb{F}_{n-1}^{(k+1)}. \end{aligned}$$
From (3),
$$ \frac{\vert r\vert }{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq \bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}. $$
On the other hand, let the matrices A and B be defined by
$$ A= \begin{pmatrix} \mathbb{F}_{0}^{(k)} & 1 & 1 & \cdots& 1 & 1 \\ r & \mathbb {F}_{0}^{(k)} & 1 & \cdots& 1 & 1 \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ r & r & r & \cdots& \mathbb{F}_{0}^{(k)} & 1 \\ r & r & r & \cdots& r & \mathbb{F}_{0}^{(k)} \end{pmatrix} $$
and
$$ B= \begin{pmatrix} \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \mathbb{F}_{2}^{(k)} & \cdots& \mathbb{F}_{n-2}^{(k)} & \mathbb{F}_{n-1}^{(k)} \\ \mathbb {F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} & \cdots& \mathbb{F}_{n-3}^{(k)} & \mathbb{F}_{n-2}^{(k)} \\ \vdots& \vdots& \vdots& & \vdots& \vdots\\ \mathbb{F}_{2}^{(k)} & \mathbb {F}_{3}^{(k)} & \mathbb{F}_{4}^{(k)} & \cdots& \mathbb{F}_{0}^{(k)} & \mathbb{F}_{1}^{(k)} \\ \mathbb{F}_{1}^{(k)} & \mathbb{F}_{2}^{(k)} & \mathbb{F}_{3}^{(k)} & \cdots& \mathbb{F}_{n-1}^{(k)} & \mathbb{F}_{0}^{(k)} \end{pmatrix} . $$
Thus \(C_{r}^{(k)}=A\circ B\). Then we obtain
$$ r_{1}(A)=\max_{1\leq i\leq n}\sqrt{\sum _{j=1}^{n}\vert a_{ij}\vert ^{2}}=\sqrt{ \bigl( \mathbb{F}_{0}^{(k)} \bigr) ^{2}+n-1}=\sqrt{n-1} $$
and
$$ c_{1}(B)=\max_{1\leq j\leq n}\sqrt{\sum _{i=1}^{n}\vert b_{ij}\vert ^{2}}=\sqrt{\sum_{s=0}^{n-1} \bigl( \mathbb {F}_{s}^{(k)} \bigr) ^{2}}. $$
Therefore, from (11) and Lemma 1, we have
$$ \bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq \sqrt{n-1} \mathbb{F}_{n-1}^{(k+1)}. $$
Thus, we have
$$ \frac{\vert r\vert }{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}\leq \bigl\Vert C_{r}^{(k)}\bigr\Vert _{2}\leq\sqrt{n-1} \mathbb{F}_{n-1}^{(k+1)}. $$
 □
Corollary 4
Let \(C_{r}=\operatorname{Circ}(\mathbb{F}_{0},\mathbb{F}_{1},\ldots ,\mathbb{F}_{n-1})\) be an \(n\times n\) r-circulant matrix.
(i)
If \(\vert r\vert \geq1\), then
$$ \frac{1}{\sqrt{n}}\mathbb{F}_{n-1}^{(2)}\leq \Vert C_{r}\Vert _{2}\leq \vert r\vert \sqrt{ n-1} \mathbb{F}_{n-1}^{(2)}. $$
 
(ii)
If \(\vert r\vert <1\), then
$$ \frac{\vert r\vert }{\sqrt{n}}\mathbb{F}_{n-1}^{(2)}\leq \Vert C_{r}\Vert _{2}\leq\sqrt{n-1}\mathbb{F}_{n-1}^{(2)}. $$
 
Proof
It is easily seen that the proof can be completed if we take \(k=1\) in Theorem 5. □

4 Numerical examples

In this section, we present some numerical examples by using Maple 11.
Example 1
Let \(C=\operatorname{Circ}(F_{-1}\mathbb{F}_{0},F_{0}\mathbb {F}_{1},\ldots,F_{n-2}\mathbb{F}_{n-1})\) be as in (6). We obtain the spectral norms of some \(n\times n\) C matrices, with the aid of Theorem 3 (see Table 1).
Table 1
Spectral norms of C
n
\(\boldsymbol {\| C\|_{2}}\)
n = 5
0.1016666667 × 102
n = 10
0.1731757972 × 103
n = 50
0.4228842484 × 1011
n = 100
0.1190154990 × 1022
n = 500
0.4684460937 × 10105
n = 1,000
0.1460426641 × 10210
Example 2
Let \(C_{r}^{(k)}=\operatorname{Circ}(\mathbb{F}_{0}^{(k)},\mathbb {F}_{1}^{(k)},\ldots, \mathbb{F}_{4}^{(k)})\) be \(5\times5\) r-circulant matrix as in (10). We obtain Euclidean norms of \(C_{r}^{(k)}\) for some values of r and k, with the aid of Theorem 4 (see Table 2).
Table 2
Euclidean norms of \(\pmb{C_{r}^{(k)}}\) for \(\pmb{n=5}\)
k / r
k  = 1
k  = 2
k  = 3
k  = 4
r = −2
\(\frac{\sqrt{9{,}935}}{6}\)
\(\frac{\sqrt{61{,}598}}{6}\)
\(\frac{ \sqrt{246{,}743}}{6}\)
\(\frac{\sqrt{755{,}966}}{6}\)
r = −0.5
\(\frac{\sqrt{7{,}415}}{12}\)
\(\frac{\sqrt{37{,}127}}{12}\)
\(\frac{\sqrt{136{,}007}}{12}\)
\(\frac{\sqrt{397{,}559}}{12}\)
r = 0.1
\(\frac{\sqrt{133{,}655}}{60}\)
\(\frac{\sqrt{593{,}351}}{60}\)
\(\frac{\sqrt{2{,}038{,}631}}{60}\)
\(\frac{\sqrt{5{,}736{,}887}}{60}\)
r = 0.9
\(\frac{\sqrt{306{,}055}}{60}\)
\(\frac{\sqrt{1{,}709{,}431}}{60}\)
\(\frac{\sqrt{6{,}577{,}111}}{60}\)
\(\frac{\sqrt{19{,}743{,}847}}{60}\)
r = 1
\(\frac{\sqrt{3{,}470}}{6}\)
\(\frac{\sqrt{19{,}745}}{6}\)
\(\frac{5 \sqrt{3{,}062}}{6}\)
\(\frac{\sqrt{230{,}705}}{6}\)
r = 1.1
\(\frac{\sqrt{392{,}255}}{60}\)
\(\frac{\sqrt{2{,}267{,}471}}{60}\)
\(\frac{\sqrt{8{,}846{,}351}}{60}\)
\(\frac{\sqrt{26{,}747{,}327}}{60}\)
r = 10
\(\frac{\sqrt{216{,}815}}{6}\)
\(\frac{\sqrt{1{,}400{,}894}}{6}\)
\(\frac{\sqrt{5{,}692{,}919}}{6}\)
\(\frac{\sqrt{17{,}564{,}318}}{6}\)
Example 3
Let \(C_{r}^{(k)}=\operatorname{Circ}(\mathbb{F}_{0}^{(k)},\mathbb {F}_{1}^{(k)},\ldots,\mathbb{F}_{4}^{(k)})\) be \(5\times5\) r-circulant matrix as in (10). We obtain some lower and upper bounds for the spectral norms of \(C_{r}^{(k)}\) for some values of r and k, with the aid of Theorem 5 (see Tables 3 and 4).
Table 3
Some lower and upper bounds for the spectral norms of \(\pmb{C_{r}^{(k)}}\) for \(\pmb{n=5}\) and \(\pmb{|r|\geq1}\)
 
| r | ≥ 1
\(\boldsymbol {\frac{1}{\sqrt{n}}\mathbb {F}_{n-1}^{(k+1)}}\)
\(\boldsymbol {\|C_{r}^{(k)}\|_{2}}\)
\(\boldsymbol {|r|\sqrt{n-1}\mathbb{F}_{n-1}^{(k+1)}}\)
k = 1
r = −2
3.726779962
13.07393997
33.33333333
r = 1
3.726779962
8.333333332
16.66666667
r = 1.1
3.726779962
6.187213310
18.33333333
k = 2
r = −2
7.975309119
29.94984421
71.33333333
r = 1
7.975309119
17.83333333
35.66666667
r = 1.1
7.975309119
19.01179206
39.23333333
k = 3
r = −2
14.45990625
56.50736302
129.3333333
r = 1
14.45990625
32.33333334
64.66666667
r = 1.1
14.45990625
34.60097132
71.13333333
k = 4
r = −2
23.62778496
94.70523788
211.3333333
r = 1
23.62778496
52.83333332
105.6666667
r = 1.1
23.62778496
56.68238740
116.2333333
Table 4
Some lower and upper bounds for the spectral norms of \(\pmb{C_{r}^{(k)}}\) for \(\pmb{n=5}\) and \(\pmb{|r|<1}\)
 
| r |<1
\(\boldsymbol {\frac{| r|}{\sqrt{n}}\mathbb{F}_{n-1}^{(k+1)}}\)
\(\boldsymbol {\| C_{r}^{(k)}\|_{2}}\)
\(\boldsymbol {\sqrt{n-1}\mathbb{F}_{n-1}^{(k+1)}}\)
k = 1
r = −0.5
1.863389981
6.051069352
16.66666667
r = 0.1
0.372677996
5.912862964
16.66666667
r = 0.9
3.354101966
7.874554252
16.66666667
k = 2
r = −0.5
3.987654558
13.14607243
35.66666667
r = 0.1
0.797530912
12.64953828
35.66666667
r = 0.9
7.177778206
16.74610810
35.66666667
k = 3
r = −0.5
7.229953125
24.39979647
64.66666667
r = 0.1
1.445990625
23.46328510
64.66666667
r = 0.9
13.01391563
30.26866878
64.66666667
k = 4
r = −0.5
11.81389248
40.74250279
105.6666667
r = 0.1
2.362778496
39.32798158
105.6666667
r = 0.9
21.26500646
49.37728355
105.6666667

Acknowledgements

The authors are grateful to two anonymous referees and the associate editor for their careful reading, helpful comments, and constructive suggestions, which improved the presentation of the results.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each of the authors, NT, and CK, contributed to each part of this work equally and read and approved the final version of the manuscript.
Literatur
1.
2.
Zurück zum Zitat Kocer, EG, Mansour, T, Tuglu, N: Norms of circulant and semicirculant matrices with Horadams numbers. Ars Comb. 85, 353-359 (2007) MathSciNetMATH Kocer, EG, Mansour, T, Tuglu, N: Norms of circulant and semicirculant matrices with Horadams numbers. Ars Comb. 85, 353-359 (2007) MathSciNetMATH
3.
Zurück zum Zitat Zhou, J, Chen, X, Jiang, Z: The explicit identities for spectral norms of circulant-type matrices involving binomial coefficients and harmonic numbers. Math. Probl. Eng. 2014, Article ID 518913 (2014) MathSciNet Zhou, J, Chen, X, Jiang, Z: The explicit identities for spectral norms of circulant-type matrices involving binomial coefficients and harmonic numbers. Math. Probl. Eng. 2014, Article ID 518913 (2014) MathSciNet
4.
Zurück zum Zitat Zhou, J: The identical estimates of spectral norms for circulant matrices with binomial coefficients combined with Fibonacci numbers and Lucas numbers entries. J. Funct. Spaces Appl. 2014, Article ID 672398 (2014) Zhou, J: The identical estimates of spectral norms for circulant matrices with binomial coefficients combined with Fibonacci numbers and Lucas numbers entries. J. Funct. Spaces Appl. 2014, Article ID 672398 (2014)
5.
Zurück zum Zitat Shen, SQ, Cen, JM: On the bounds for the norms of r-circulant matrices with Fibonacci and Lucas numbers. Appl. Math. Comput. 216, 2891-2897 (2010) MathSciNetCrossRefMATH Shen, SQ, Cen, JM: On the bounds for the norms of r-circulant matrices with Fibonacci and Lucas numbers. Appl. Math. Comput. 216, 2891-2897 (2010) MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bahşı, M, Solak, S: On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers. J. Math. Inequal. 8, 693-705 (2014) MathSciNet Bahşı, M, Solak, S: On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers. J. Math. Inequal. 8, 693-705 (2014) MathSciNet
7.
Zurück zum Zitat Jiang, Z, Zhou, J: A note on spectral norms of even-order r-circulant matrices. Appl. Math. Comput. 250, 368-371 (2015) MathSciNetCrossRef Jiang, Z, Zhou, J: A note on spectral norms of even-order r-circulant matrices. Appl. Math. Comput. 250, 368-371 (2015) MathSciNetCrossRef
9.
Zurück zum Zitat Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991) CrossRefMATH Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991) CrossRefMATH
10.
Zurück zum Zitat Graham, RL, Knuth, DE, Patashnik, O: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994) MATH Graham, RL, Knuth, DE, Patashnik, O: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994) MATH
Metadaten
Titel
On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers
verfasst von
Naim Tuglu
Can Kızılateş
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0778-1

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe