Skip to main content
Erschienen in: Fire Technology 2/2020

10.09.2019

On the Protective Performance of Firefighters’ Garments: Air Gaps Between Fabric Layers

verfasst von: Ahmed Ghazy

Erschienen in: Fire Technology | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Municipal firefighters count on their protective garments to avoid skin burns caused by thermal and flame exposures. Typical firefighting garment consists of three layers of different fire-resistant fabrics named as outer shell, moisture barrier and thermal liner. This paper employed a numerical heat transfer model for firefighters’ garments, which paid more attention to modeling air gaps bounded between garment’s layers. The paper explored and compared the influences of air gaps bounded between garment’s layers on its protective performance. Specifically, the paper investigated the effect of a variation in the air gaps between the garment layers from 1 mm to 6 mm, a variation in the backside emissivity of the outer shell and moisture barrier layers from 0.9 to 0.1 and a variation in their typical thicknesses from 50% to 200% on the protective performance of garment. The results showed that increasing the width of the gap between the moisture barrier and the thermal liner, reducing the outer shell backside emissivity and increasing the moisture barrier thickness improves the protective performance of firefighters’ garments more than does increasing the width of the gap between the moisture barrier and outer shell, reducing the moisture barrier backside emissivity and increasing the outer shell thickness, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beyler CL (2001) Fire safety challenges in the 21st century. J Fire Prot Eng 11(1): 4–15CrossRef Beyler CL (2001) Fire safety challenges in the 21st century. J Fire Prot Eng 11(1): 4–15CrossRef
2.
Zurück zum Zitat National Fire Protection Association (2007) NFPA 1971 standard on protective ensemble of structural firefighting. Massachusetts, USA National Fire Protection Association (2007) NFPA 1971 standard on protective ensemble of structural firefighting. Massachusetts, USA
3.
Zurück zum Zitat Mell WE, Lawson JR (2000) A heat transfer model for firefighters’ protective clothing. J Fire Technol 36: 39–68CrossRef Mell WE, Lawson JR (2000) A heat transfer model for firefighters’ protective clothing. J Fire Technol 36: 39–68CrossRef
4.
Zurück zum Zitat Chitrphiromsri P (2004) Modeling of thermal performance of firefighter protective clothing during the intense heat exposure. Ph.D. Thesis, North Carolina State University, Raleigh, NC Chitrphiromsri P (2004) Modeling of thermal performance of firefighter protective clothing during the intense heat exposure. Ph.D. Thesis, North Carolina State University, Raleigh, NC
5.
Zurück zum Zitat Barker RL, Guerth-Schacher C, Grimes RV, Hamouda H (2006) Effect of moisture on the thermal performance of firefighter protective clothing in low-level radiant heat exposures. Text Res J 76(1): 27–31CrossRef Barker RL, Guerth-Schacher C, Grimes RV, Hamouda H (2006) Effect of moisture on the thermal performance of firefighter protective clothing in low-level radiant heat exposures. Text Res J 76(1): 27–31CrossRef
6.
Zurück zum Zitat Onofrei E, Petrusic S, Bedek G, Dupont D, Soulat D, Codau T (2014) Study of heat transfer through multilayer protective clothing at low-level thermal radiation. J Ind Text 45(2): 222–238CrossRef Onofrei E, Petrusic S, Bedek G, Dupont D, Soulat D, Codau T (2014) Study of heat transfer through multilayer protective clothing at low-level thermal radiation. J Ind Text 45(2): 222–238CrossRef
7.
Zurück zum Zitat Shinohara M, Yanai E (2005) Effect of a moisture barrier on heat transfer through firefighters’ protective clothing. In: Proceedings of the 3rd international conference on human-environment system, Tokyo, Japan, pp 196–201 Shinohara M, Yanai E (2005) Effect of a moisture barrier on heat transfer through firefighters’ protective clothing. In: Proceedings of the 3rd international conference on human-environment system, Tokyo, Japan, pp 196–201
8.
Zurück zum Zitat Song G, Chitrphiromsri P, Ding D (2008) Numerical simulation of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergon 14(1): 89–106CrossRef Song G, Chitrphiromsri P, Ding D (2008) Numerical simulation of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergon 14(1): 89–106CrossRef
9.
Zurück zum Zitat Jiang YY, Yanai E, Nishimura K, Zhang H, Abe N, Shinohara M, Wakatsuki K (2010) An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing. Fire Saf J 45: 314–326CrossRef Jiang YY, Yanai E, Nishimura K, Zhang H, Abe N, Shinohara M, Wakatsuki K (2010) An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing. Fire Saf J 45: 314–326CrossRef
10.
Zurück zum Zitat Mercer GN, Sidhu HS (2007) Mathematical modeling of the effect of fire exposure on a new type of protective clothing. ANZIAM 49: C289–C305 Mercer GN, Sidhu HS (2007) Mathematical modeling of the effect of fire exposure on a new type of protective clothing. ANZIAM 49: C289–C305
11.
Zurück zum Zitat Mercer GN, Sidhu, HS (2009) A theoretical investigation into phase change clothing benefits for firefighters under extreme conditions. Chem Prod Process Model 4: 3 Mercer GN, Sidhu, HS (2009) A theoretical investigation into phase change clothing benefits for firefighters under extreme conditions. Chem Prod Process Model 4: 3
12.
Zurück zum Zitat Hu Y, Huang D, Qi Z, He S, Yang H, Zhang H (2013) Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf 49: 567–573CrossRef Hu Y, Huang D, Qi Z, He S, Yang H, Zhang H (2013) Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf 49: 567–573CrossRef
13.
Zurück zum Zitat Elgafy A, Mishra S (2014) A heat transfer model for incorporating carbon foam fabrics in firefighter’s garment. Heat Mass Transf 50: 545–575CrossRef Elgafy A, Mishra S (2014) A heat transfer model for incorporating carbon foam fabrics in firefighter’s garment. Heat Mass Transf 50: 545–575CrossRef
14.
Zurück zum Zitat Ghazy A, Bergstrom DJ (2013) Numerical simulation of fabric’s motion on protective clothing performance during flash fire exposure. Heat Mass Transf 49: 775–788CrossRef Ghazy A, Bergstrom DJ (2013) Numerical simulation of fabric’s motion on protective clothing performance during flash fire exposure. Heat Mass Transf 49: 775–788CrossRef
15.
Zurück zum Zitat Ghazy A (2014) Numerical study of the air gap between fire-protective clothing and the skin. J Ind Text 44(2): 257–274CrossRef Ghazy A (2014) Numerical study of the air gap between fire-protective clothing and the skin. J Ind Text 44(2): 257–274CrossRef
16.
Zurück zum Zitat Ghazy A (2014) Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation. Mech Eng Res J 4(2): 1–15 Ghazy A (2014) Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation. Mech Eng Res J 4(2): 1–15
17.
Zurück zum Zitat Pennes HH (1948) Analysis of tissue and arterial blood temperatures in resting human forearm. J Appl Physiol 1: 93–122CrossRef Pennes HH (1948) Analysis of tissue and arterial blood temperatures in resting human forearm. J Appl Physiol 1: 93–122CrossRef
18.
Zurück zum Zitat Henriques FC Jr, Moritz AR (1947) Studies of thermal injuries I: the conduction of heat to and through skin and the temperatures attained therein. A theoretical and experimental investigation. Am J Pathol 23: 531–549 Henriques FC Jr, Moritz AR (1947) Studies of thermal injuries I: the conduction of heat to and through skin and the temperatures attained therein. A theoretical and experimental investigation. Am J Pathol 23: 531–549
19.
Zurück zum Zitat Trovi DA (2005) Effects of thermal properties on skin burn predictions in longer duration protective clothing tests. J ASTM Int 2(1): 1–13 Trovi DA (2005) Effects of thermal properties on skin burn predictions in longer duration protective clothing tests. J ASTM Int 2(1): 1–13
Metadaten
Titel
On the Protective Performance of Firefighters’ Garments: Air Gaps Between Fabric Layers
verfasst von
Ahmed Ghazy
Publikationsdatum
10.09.2019
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2020
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-019-00905-w

Weitere Artikel der Ausgabe 2/2020

Fire Technology 2/2020 Zur Ausgabe