Skip to main content
Erschienen in: Metals and Materials International 3/2019

12.12.2018

On the Role of Chromium in Dynamic Transformation of Austenite

verfasst von: K. Chadha, Davood Shahriari, C. Jr. Aranas, Louis-Philippe Lapierre-Boire, Mohammad Jahazi

Erschienen in: Metals and Materials International | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of Chromium (Cr) on the dynamic transformation (DT) of austenite to ferrite at temperatures up to 430 °C above Ae3 was studied in a medium-carbon low-alloy steel. Hot compression tests were performed using Gleeble 3800® thermomechanical simulator followed by microstructural examinations using electron microscopy (FESEM-EBSD). Driving force calculation using austenite flow stress and ferrite yield stress on an inverse absolute temperature graph indicated that Cr increases the driving force for the transformation of austenite to ferrite; however, when the influence of stress and thermodynamic analysis are taken into account, it was observed that Cr increases the barrier energy and therefore, emerges as a barrier to the transformation. An analysis, based on lattice and pipe diffusion theories is presented that quantifies the role of stress on the diffusivity of Cr and is compared with other the main alloying elements such as C, Si and Mn and its impact, positive or negative, on the DT barrier energy. Finally, a comparison is made on the differential effects of temperature and stress on the initiation of DT in medium-carbon low-alloy steels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Matsumura, H. Yada, Evolution of ultrafine-grained ferrite in hot successive deformation. Trans. Iron Steel Inst. Jpn. 27(6), 492–498 (1987)CrossRef Y. Matsumura, H. Yada, Evolution of ultrafine-grained ferrite in hot successive deformation. Trans. Iron Steel Inst. Jpn. 27(6), 492–498 (1987)CrossRef
2.
Zurück zum Zitat H. Yada, C.M. Li, H. Yamagata, Dynamic γ → α transformation during hot deformation in iron–nickel–carbon alloys. ISIJ Int. 40(2), 200–206 (2000)CrossRef H. Yada, C.M. Li, H. Yamagata, Dynamic γ → α transformation during hot deformation in iron–nickel–carbon alloys. ISIJ Int. 40(2), 200–206 (2000)CrossRef
3.
Zurück zum Zitat C. Ghosh, C. Aranas Jr., J.J. Jonas, Dynamic transformation of deformed austenite at temperatures above the Ae3. Prog. Mater Sci. 82, 151–233 (2016)CrossRef C. Ghosh, C. Aranas Jr., J.J. Jonas, Dynamic transformation of deformed austenite at temperatures above the Ae3. Prog. Mater Sci. 82, 151–233 (2016)CrossRef
4.
Zurück zum Zitat N. Park et al., Flow stress analysis for determining the critical condition of dynamic ferrite transformation in 6Ni–0.1C steel. Acta Mater. 61(1), 163–173 (2013)CrossRef N. Park et al., Flow stress analysis for determining the critical condition of dynamic ferrite transformation in 6Ni–0.1C steel. Acta Mater. 61(1), 163–173 (2013)CrossRef
5.
Zurück zum Zitat L. Sun et al., Effect of strain path on dynamic strain-induced transformation in a microalloyed steel. Acta Mater. 66, 132–149 (2014)CrossRef L. Sun et al., Effect of strain path on dynamic strain-induced transformation in a microalloyed steel. Acta Mater. 66, 132–149 (2014)CrossRef
6.
Zurück zum Zitat B. Guo, et al., Dynamic transformation of Ti–6Al–4 V during torsion in the two-phase region. J. Mater. Sci. 53(12), 9305–9315 (2018)CrossRef B. Guo, et al., Dynamic transformation of Ti–6Al–4 V during torsion in the two-phase region. J. Mater. Sci. 53(12), 9305–9315 (2018)CrossRef
7.
Zurück zum Zitat B. Guo et al., Reverse transformation behavior of Ti-6Al-4 V after deformation in the two-phase region. Metal. Mater. Trans. A 49(1), 22–27 (2018)CrossRef B. Guo et al., Reverse transformation behavior of Ti-6Al-4 V after deformation in the two-phase region. Metal. Mater. Trans. A 49(1), 22–27 (2018)CrossRef
8.
Zurück zum Zitat D.N. Hanlon, J. Sietsma, S. van der Zwaag, The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation. ISIJ Int. 41(9), 1028–1036 (2001)CrossRef D.N. Hanlon, J. Sietsma, S. van der Zwaag, The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation. ISIJ Int. 41(9), 1028–1036 (2001)CrossRef
9.
Zurück zum Zitat C. Ghosh et al., The dynamic transformation of deformed austenite at temperatures above the Ae3. Acta Mater. 61(7), 2348–2362 (2013)CrossRef C. Ghosh et al., The dynamic transformation of deformed austenite at temperatures above the Ae3. Acta Mater. 61(7), 2348–2362 (2013)CrossRef
10.
Zurück zum Zitat C. Aranas Jr., J.J. Jonas, Effect of Mn and Si on the dynamic transformation of austenite above the Ae3 temperature. Acta Mater. 82, 1–10 (2015)CrossRef C. Aranas Jr., J.J. Jonas, Effect of Mn and Si on the dynamic transformation of austenite above the Ae3 temperature. Acta Mater. 82, 1–10 (2015)CrossRef
11.
Zurück zum Zitat K. Chadha et al., Influence of strain rate on dynamic transformation of austenite in an as-cast medium-carbon low-alloy steel. Materialia 1, 155–167 (2018)CrossRef K. Chadha et al., Influence of strain rate on dynamic transformation of austenite in an as-cast medium-carbon low-alloy steel. Materialia 1, 155–167 (2018)CrossRef
12.
Zurück zum Zitat N. Saunders et al., Using JMatPro to model materials properties and behavior. JOM 55(12), 60–65 (2003)CrossRef N. Saunders et al., Using JMatPro to model materials properties and behavior. JOM 55(12), 60–65 (2003)CrossRef
13.
Zurück zum Zitat K. Chadha et al., Deformation and recrystallization behavior of the cast structure in large size, high strength steel ingots: experimentation and modeling. Metal. Mater. Trans. A 48(9), 4297–4313 (2017)CrossRef K. Chadha et al., Deformation and recrystallization behavior of the cast structure in large size, high strength steel ingots: experimentation and modeling. Metal. Mater. Trans. A 48(9), 4297–4313 (2017)CrossRef
14.
Zurück zum Zitat K. Chadha, Z.A., C. Jr. Aranas, D. Shahriari, M. Jahazi, Influence of strain rate in dynamic transformation of austenite in an As-cast medium carbon low alloy steel. Materialia (2018) K. Chadha, Z.A., C. Jr. Aranas, D. Shahriari, M. Jahazi, Influence of strain rate in dynamic transformation of austenite in an As-cast medium carbon low alloy steel. Materialia (2018)
15.
Zurück zum Zitat H. Song et al., Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-mn lightweight steels. Metal. Mater. Trans. A 47(6), 2674–2685 (2016)CrossRef H. Song et al., Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-mn lightweight steels. Metal. Mater. Trans. A 47(6), 2674–2685 (2016)CrossRef
16.
Zurück zum Zitat Koskenniska, J., Austenitic Stainless Steel. 2014, Google Patents Koskenniska, J., Austenitic Stainless Steel. 2014, Google Patents
17.
Zurück zum Zitat P.J. Wray, High temperature plastic-flow behavior of mixtures of austenite, cementite, ferrite, and pearlite in plain-carbon steels. Metal. Trans. A, Phys. Metal. Mater. Sci. 15A(11), 2041–2058 (1984)CrossRef P.J. Wray, High temperature plastic-flow behavior of mixtures of austenite, cementite, ferrite, and pearlite in plain-carbon steels. Metal. Trans. A, Phys. Metal. Mater. Sci. 15A(11), 2041–2058 (1984)CrossRef
18.
Zurück zum Zitat J.J. Jonas, C. Ghosh, Role of mechanical activation in the dynamic transformation of austenite. Acta Mater. 61(16), 6125–6131 (2013)CrossRef J.J. Jonas, C. Ghosh, Role of mechanical activation in the dynamic transformation of austenite. Acta Mater. 61(16), 6125–6131 (2013)CrossRef
19.
Zurück zum Zitat H. Bhadeshia, Material factors. ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, pp. 3–10 (2002) H. Bhadeshia, Material factors. ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, pp. 3–10 (2002)
20.
Zurück zum Zitat C. Aranas Jr. et al., Flow softening-based formation of widmanstätten ferrite in a 0.06%C steel deformed above the Ae3. ISIJ Int. 55(1), 300–307 (2015)CrossRef C. Aranas Jr. et al., Flow softening-based formation of widmanstätten ferrite in a 0.06%C steel deformed above the Ae3. ISIJ Int. 55(1), 300–307 (2015)CrossRef
21.
Zurück zum Zitat R. Grewal et al., Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field. Acta Mater. 109, 23–31 (2016)CrossRef R. Grewal et al., Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field. Acta Mater. 109, 23–31 (2016)CrossRef
22.
Zurück zum Zitat C. Aranas Jr., et al. Formation of Widmanstätten ferrite in a C-Mn steel at temperatures high in the austenite phase field. in Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM 2015). Whistler, BC (2015) C. Aranas Jr., et al. Formation of Widmanstätten ferrite in a C-Mn steel at temperatures high in the austenite phase field. in Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM 2015). Whistler, BC (2015)
23.
Zurück zum Zitat F. Masoumi et al., On the occurrence of liquation during linear friction welding of Ni-based superalloys. Metal. Mater. Trans. A 48(6), 2886–2899 (2017)CrossRef F. Masoumi et al., On the occurrence of liquation during linear friction welding of Ni-based superalloys. Metal. Mater. Trans. A 48(6), 2886–2899 (2017)CrossRef
24.
Zurück zum Zitat G.B. Viswanathan et al., Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scripta Mater. 94(Supplement C), 5–8 (2015)CrossRef G.B. Viswanathan et al., Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scripta Mater. 94(Supplement C), 5–8 (2015)CrossRef
25.
Zurück zum Zitat S.L. Robinson, O.D. Sherby, Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall. 17(2), 109–125 (1969)CrossRef S.L. Robinson, O.D. Sherby, Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall. 17(2), 109–125 (1969)CrossRef
26.
Zurück zum Zitat D. Samantaray et al., Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel. Mater. Sci. Eng., A 528(3), 1071–1077 (2011)CrossRef D. Samantaray et al., Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel. Mater. Sci. Eng., A 528(3), 1071–1077 (2011)CrossRef
27.
Zurück zum Zitat H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982) H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
28.
Zurück zum Zitat M.F. Ashby et al., Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 288, 59–95 (1978)CrossRef M.F. Ashby et al., Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 288, 59–95 (1978)CrossRef
29.
Zurück zum Zitat J.-O. Andersson et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002)CrossRef J.-O. Andersson et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002)CrossRef
30.
Zurück zum Zitat Y. Taniguchi, K. Hara, M. Senoo, High Pressure Liquids and Solutions (Elsevier, Amsterdam, 2013) Y. Taniguchi, K. Hara, M. Senoo, High Pressure Liquids and Solutions (Elsevier, Amsterdam, 2013)
31.
Zurück zum Zitat A.F. Smitll, R. Hales, Diffusion of manganese in type 316 austenitic stainless steel. Metal Sci. 9(1), 181–184 (1975)CrossRef A.F. Smitll, R. Hales, Diffusion of manganese in type 316 austenitic stainless steel. Metal Sci. 9(1), 181–184 (1975)CrossRef
32.
Zurück zum Zitat Posner, E.S., Experiments and applications of chromium diffusion in spinel. 2012, University of Arizona Posner, E.S., Experiments and applications of chromium diffusion in spinel. 2012, University of Arizona
33.
Zurück zum Zitat C.L. Beswick, R.D. Shalders, T.W. Swaddle, Volume profile for substitution in labile chromium (III) complexes: reactions of aqueous [Cr (Hedta) OH2] and [Cr (edta)]-with thiocyanate ion. Inorg. Chem. 35(4), 991–994 (1996)CrossRef C.L. Beswick, R.D. Shalders, T.W. Swaddle, Volume profile for substitution in labile chromium (III) complexes: reactions of aqueous [Cr (Hedta) OH2] and [Cr (edta)]-with thiocyanate ion. Inorg. Chem. 35(4), 991–994 (1996)CrossRef
34.
Zurück zum Zitat F. Béjina et al., Activation volume of silicon diffusion in San Carlos olivine. Geophys. Res. Lett. 24(21), 2597–2600 (1997)CrossRef F. Béjina et al., Activation volume of silicon diffusion in San Carlos olivine. Geophys. Res. Lett. 24(21), 2597–2600 (1997)CrossRef
35.
Zurück zum Zitat X. Tingdong, Creating and destroying vacancies in solids and non-equilibrium grain-boundary segregation. Phil. Mag. 83(7), 889–899 (2003)CrossRef X. Tingdong, Creating and destroying vacancies in solids and non-equilibrium grain-boundary segregation. Phil. Mag. 83(7), 889–899 (2003)CrossRef
36.
Zurück zum Zitat E.I. Poliak, J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 44(1), 127–136 (1996)CrossRef E.I. Poliak, J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 44(1), 127–136 (1996)CrossRef
37.
Zurück zum Zitat C. Aranas et al., Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium. Scr. Mater. 133, 83–85 (2017)CrossRef C. Aranas et al., Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium. Scr. Mater. 133, 83–85 (2017)CrossRef
38.
Zurück zum Zitat C. Ghosh et al., Dynamic transformation behavior of a deformed high carbon steel at temperatures above the Ae3. ISIJ Int. 53(5), 900–908 (2013)CrossRef C. Ghosh et al., Dynamic transformation behavior of a deformed high carbon steel at temperatures above the Ae3. ISIJ Int. 53(5), 900–908 (2013)CrossRef
Metadaten
Titel
On the Role of Chromium in Dynamic Transformation of Austenite
verfasst von
K. Chadha
Davood Shahriari
C. Jr. Aranas
Louis-Philippe Lapierre-Boire
Mohammad Jahazi
Publikationsdatum
12.12.2018
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 3/2019
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-00227-6

Weitere Artikel der Ausgabe 3/2019

Metals and Materials International 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.