Skip to main content

2017 | OriginalPaper | Buchkapitel

On the Strain Rate Sensitive Characteristics of Nanocrystalline Aluminum Alloys

verfasst von : Sreedevi Varam, K. Bhanu Sankara Rao, Koteswararao V. Rajulapati

Erschienen in: Mechanical and Creep Behavior of Advanced Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For structural applications, ductility is essential along with high strength in nanocrystalline (nc) materials. In general, ductility is controlled by strain hardening and strain rate sensitivity. In conventional materials which are coarse grained, the deformation is mainly dislocation based and accumulation of these dislocations results in work hardening. The deformation mechanisms that are operative in nc materials are distinct and the strain hardening ability is limited in nc materials. Strain rate sensitivity (SRS) and activation volume are the two key parameters which govern the underlying deformation mechanisms in nc materials. Higher SRS value could be an indication of better ductility levels. In general, nanocrystalline single phase fcc metals showed increased SRS, where as bcc metals showed decreased SRS. The addition of second phase effects the overall SRS of the nano composite/alloy. Since producing nc materials in bulk quantities is a challenge, nanoindentation, which can be performed on smaller sized samples, is an useful technique to study SRS and activation volume. Strain rate sensitive characteristics of Al and its alloys are reviewed in this paper. Our earlier work as well as the available literature data on these alloys showed that the nature and structure of the second phase dispersions greatly influence the SRS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill Book Company, Boston, 1986) G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill Book Company, Boston, 1986)
2.
Zurück zum Zitat H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef
3.
Zurück zum Zitat H. Gleiter, Nanocrystalline materials. Prog. Mater Sci. 33, 223–315 (1989)CrossRef H. Gleiter, Nanocrystalline materials. Prog. Mater Sci. 33, 223–315 (1989)CrossRef
4.
Zurück zum Zitat M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427–556 (2006)CrossRef M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427–556 (2006)CrossRef
5.
Zurück zum Zitat K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003)CrossRef K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003)CrossRef
6.
Zurück zum Zitat C. Suryanarayana, C.C. Koch, Nanocrystalline materials—current research and future directions. Hyperfine Interact. 130, 5–44 (2000)CrossRef C. Suryanarayana, C.C. Koch, Nanocrystalline materials—current research and future directions. Hyperfine Interact. 130, 5–44 (2000)CrossRef
7.
Zurück zum Zitat C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)CrossRef C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)CrossRef
8.
Zurück zum Zitat H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333 (1990)CrossRef H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333 (1990)CrossRef
9.
Zurück zum Zitat B. Huang, R.J. Perez, E.J. Lavernia, Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255, 124–132 (1998)CrossRef B. Huang, R.J. Perez, E.J. Lavernia, Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255, 124–132 (1998)CrossRef
10.
Zurück zum Zitat R.Z. Valiev, I.V. Alexandrov, Nanostructured materials from severe plastic deformation. Nanostruct. Mater. 12, 35–40 (1999)CrossRef R.Z. Valiev, I.V. Alexandrov, Nanostructured materials from severe plastic deformation. Nanostruct. Mater. 12, 35–40 (1999)CrossRef
11.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)CrossRef R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)CrossRef
12.
Zurück zum Zitat R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zechetbauer, Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33–39 (2006)CrossRef R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zechetbauer, Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33–39 (2006)CrossRef
13.
Zurück zum Zitat I. Kosta, E. Vallés, E. Gómez, M. Sarret, C. Müller, Nanocrystalline CoP coatings prepared by different electrodeposition techniques. Mater. Lett. 65, 2849–2851 (2011)CrossRef I. Kosta, E. Vallés, E. Gómez, M. Sarret, C. Müller, Nanocrystalline CoP coatings prepared by different electrodeposition techniques. Mater. Lett. 65, 2849–2851 (2011)CrossRef
14.
Zurück zum Zitat S.K. Mukherjee, L. Joshi, P.K. Barhai, A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering. Surf. Coat. Technol. 205, 4582–4595 (2011)CrossRef S.K. Mukherjee, L. Joshi, P.K. Barhai, A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering. Surf. Coat. Technol. 205, 4582–4595 (2011)CrossRef
15.
Zurück zum Zitat C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Ductility of nanostructured materials. MRS Bulletin 24, 54–58 (1999)CrossRef C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Ductility of nanostructured materials. MRS Bulletin 24, 54–58 (1999)CrossRef
16.
Zurück zum Zitat R.J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)CrossRef R.J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)CrossRef
17.
Zurück zum Zitat M.Y. Wu, O.D. Sherby, Superplasticity in a silicon carbide whisker reinforced aluminum alloy. Scr. Metall. 18, 773–776 (1984)CrossRef M.Y. Wu, O.D. Sherby, Superplasticity in a silicon carbide whisker reinforced aluminum alloy. Scr. Metall. 18, 773–776 (1984)CrossRef
18.
Zurück zum Zitat T. Zhu, J. Li, Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010)CrossRef T. Zhu, J. Li, Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010)CrossRef
19.
Zurück zum Zitat T.G. Langdon, The relationship between strain rate sensitivity and ductility in superplastic materials. Scr. Metall. 11, 997–1000 (1977)CrossRef T.G. Langdon, The relationship between strain rate sensitivity and ductility in superplastic materials. Scr. Metall. 11, 997–1000 (1977)CrossRef
20.
Zurück zum Zitat N. Furushiro, S. Hori, The origin of high strain rate sensitivity of flow stresses in superplastic Al-Cu alloys. Scr. Metall. 12, 35–38 (1978)CrossRef N. Furushiro, S. Hori, The origin of high strain rate sensitivity of flow stresses in superplastic Al-Cu alloys. Scr. Metall. 12, 35–38 (1978)CrossRef
21.
Zurück zum Zitat C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657–662 (2003)CrossRef C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657–662 (2003)CrossRef
22.
Zurück zum Zitat C.C. Koch, R.O. Scattergood, K.L. Murty, The mechanical behavior of multiphase nanocrystalline materials. JOM 59, 66–70 (2007)CrossRef C.C. Koch, R.O. Scattergood, K.L. Murty, The mechanical behavior of multiphase nanocrystalline materials. JOM 59, 66–70 (2007)CrossRef
23.
Zurück zum Zitat W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic moduli using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic moduli using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef
24.
Zurück zum Zitat W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRef W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRef
25.
Zurück zum Zitat A. Ghosh, On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater. Sci. Eng. A 463, 36–40 (2007)CrossRef A. Ghosh, On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater. Sci. Eng. A 463, 36–40 (2007)CrossRef
26.
Zurück zum Zitat Y. Wei, A.F. Bower, H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741–1752 (2008)CrossRef Y. Wei, A.F. Bower, H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741–1752 (2008)CrossRef
27.
Zurück zum Zitat D. Tabor, The hardness and strength of metals. J. Inst. Metals 79, 1–18 (1951) D. Tabor, The hardness and strength of metals. J. Inst. Metals 79, 1–18 (1951)
28.
Zurück zum Zitat Q. Wei, Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42, 1709–1727 (2007)CrossRef Q. Wei, Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42, 1709–1727 (2007)CrossRef
29.
Zurück zum Zitat V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421–1430 (2011)CrossRef V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421–1430 (2011)CrossRef
30.
Zurück zum Zitat N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, T.G. Langdon, The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677–682 (2011) N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, T.G. Langdon, The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677–682 (2011)
31.
Zurück zum Zitat N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al–30wt.% Zn alloy using micro- and nanoindentation. Mater. Sci. Eng. A 543, 117–120 (2012)CrossRef N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al–30wt.% Zn alloy using micro- and nanoindentation. Mater. Sci. Eng. A 543, 117–120 (2012)CrossRef
32.
Zurück zum Zitat R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002)CrossRef R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002)CrossRef
33.
Zurück zum Zitat Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)CrossRef Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)CrossRef
34.
Zurück zum Zitat J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater. 53, 189–194 (2005)CrossRef J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater. 53, 189–194 (2005)CrossRef
35.
Zurück zum Zitat D. Gianola, D. Warner, J.-F. Molinari, K. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scripta Mater. 55, 649–652 (2006)CrossRef D. Gianola, D. Warner, J.-F. Molinari, K. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scripta Mater. 55, 649–652 (2006)CrossRef
36.
Zurück zum Zitat S. Varam, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795–799 (2014)CrossRef S. Varam, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795–799 (2014)CrossRef
37.
Zurück zum Zitat S. Varam, K.V. Rajulapati, K.B.S. Rao, R.O. Scattergood, K.L. Murty, C.C. Koch, Loading rate-dependent mechanical properties of bulk two-phase nanocrystalline Al–Pb alloys studied by nanoindentation. Metall. Mater. Trans. A 45, 5249–5258 (2014)CrossRef S. Varam, K.V. Rajulapati, K.B.S. Rao, R.O. Scattergood, K.L. Murty, C.C. Koch, Loading rate-dependent mechanical properties of bulk two-phase nanocrystalline Al–Pb alloys studied by nanoindentation. Metall. Mater. Trans. A 45, 5249–5258 (2014)CrossRef
38.
Zurück zum Zitat S. Varam, P. Narayana, M.D. Prasad, D. Chakravarty, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity of bulk multi-phase nanocrystalline Al–W-based alloy. Philos. Mag. Lett. 94, 582–591 (2014)CrossRef S. Varam, P. Narayana, M.D. Prasad, D. Chakravarty, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity of bulk multi-phase nanocrystalline Al–W-based alloy. Philos. Mag. Lett. 94, 582–591 (2014)CrossRef
39.
Zurück zum Zitat S. Varam, M.D. Prasad, K.B.S. Rao, K.V. Rajulapati, Mechanical properties of in-situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation. Philos. Mag. (2016) S. Varam, M.D. Prasad, K.B.S. Rao, K.V. Rajulapati, Mechanical properties of in-situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation. Philos. Mag. (2016)
40.
Zurück zum Zitat R. Kapoor, J.K. Chakravartty, Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408–5418 (2007)CrossRef R. Kapoor, J.K. Chakravartty, Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408–5418 (2007)CrossRef
41.
Zurück zum Zitat B. Ahn, R. Mitra, A. Hodge, E.J. Lavernia, S. Nutt, Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation, in: Materials Science Forum (Trans Tech Publications, 2008), pp. 221–226 B. Ahn, R. Mitra, A. Hodge, E.J. Lavernia, S. Nutt, Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation, in: Materials Science Forum (Trans Tech Publications, 2008), pp. 221–226
42.
Zurück zum Zitat P. Rodriguez, Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984)CrossRef P. Rodriguez, Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984)CrossRef
43.
Zurück zum Zitat C.X. Huang, W.P. Hu, Q.Y. Wang, Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu–11.1at%Al alloy with low stacking fault energy. Mater. Sci. Eng. A 611, 274–279 (2014)CrossRef C.X. Huang, W.P. Hu, Q.Y. Wang, Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu–11.1at%Al alloy with low stacking fault energy. Mater. Sci. Eng. A 611, 274–279 (2014)CrossRef
44.
Zurück zum Zitat T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, A. Inoue, Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties. Acta Mater. 51, 4197–4208 (2003)CrossRef T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, A. Inoue, Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties. Acta Mater. 51, 4197–4208 (2003)CrossRef
Metadaten
Titel
On the Strain Rate Sensitive Characteristics of Nanocrystalline Aluminum Alloys
verfasst von
Sreedevi Varam
K. Bhanu Sankara Rao
Koteswararao V. Rajulapati
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51097-2_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.