Skip to main content
Erschienen in: Topics in Catalysis 2-4/2016

06.08.2015 | Original Paper

On the Way to a More Open Porous Network of a Co–Re/Al2O3 Catalyst for Fischer–Tropsch Synthesis: Pore Size and Particle Size Effects on Its Performance

verfasst von: David Merino, Iñigo Pérez-Miqueo, Oihane Sanz, Mario Montes

Erschienen in: Topics in Catalysis | Ausgabe 2-4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Five different γ-alumina supports were used, one commercial and four prepared in a macro-mesoporosity range of 7–1000 nm by different preparation methods. A simple method was used to obtain a macro-mesoporous alumina support by modification of an initial commercial mesoporous alumina with a pore generating agent. Supports were used to prepare Fischer–Tropsch synthesis (FTS) catalysts. Supports and catalysts were characterized by several techniques and tested in a lab-scale fixed-bed reaction unit in the FTS at 493 K and 2 MPa, with small (<63 μm) and large (500–710 μm) catalyst particle size (PS). Catalytic results showed that with small catalyst PS, the behavior is similar among them. With large catalyst PS, C5+ selectivity considerably decreased and CH4 selectivity increased for all catalysts due to diffusional restrictions. Nevertheless, the effect of diffusion limitations of reactants and products through catalyst pores were lower for catalysts with a higher mesoporosity (20–50 nm), and much lower for the catalyst obtained when the support was modified to add macroporosity between 100 and 1000 nm. These macropores improve the transport of reactants and heavy hydrocarbons produced between the gaseous phase and the active sites. As a consequence, a better performance of the catalyst is attained, reducing the non-desirable effects of a diffusion-limited regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Post MFM, Van’t Hoog AC, Minderhoud JK, Sie ST (1989) Diffusion limitations in Fischer–Tropsch catalysts. AIChE J 35(7):1107–1114CrossRef Post MFM, Van’t Hoog AC, Minderhoud JK, Sie ST (1989) Diffusion limitations in Fischer–Tropsch catalysts. AIChE J 35(7):1107–1114CrossRef
2.
Zurück zum Zitat Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer–Tropsch synthesis: sites, pellets, and reactors. In: Eley DD, Pines H, Paul BW (eds) Advances in catalysis, vol 39. Academic Press, San Diego, pp 221–302 Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer–Tropsch synthesis: sites, pellets, and reactors. In: Eley DD, Pines H, Paul BW (eds) Advances in catalysis, vol 39. Academic Press, San Diego, pp 221–302
3.
Zurück zum Zitat Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161(1–2):59–78CrossRef Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161(1–2):59–78CrossRef
4.
Zurück zum Zitat Saib AM, Claeys M, van Steen E (2002) Silica supported cobalt Fischer–Tropsch catalysts: effect of pore diameter of support. Catal Today 71(3–4):395–402CrossRef Saib AM, Claeys M, van Steen E (2002) Silica supported cobalt Fischer–Tropsch catalysts: effect of pore diameter of support. Catal Today 71(3–4):395–402CrossRef
5.
Zurück zum Zitat Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206(2):230–241CrossRef Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206(2):230–241CrossRef
6.
Zurück zum Zitat Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. J Mol Catal A 247(1–2):206–212CrossRef Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. J Mol Catal A 247(1–2):206–212CrossRef
7.
Zurück zum Zitat Xiong H, Zhang Y, Liew K, Li J (2008) Fischer–Tropsch synthesis: the role of pore size for Co/SBA-15 catalysts. J Mol Catal A 295(1–2):68–76CrossRef Xiong H, Zhang Y, Liew K, Li J (2008) Fischer–Tropsch synthesis: the role of pore size for Co/SBA-15 catalysts. J Mol Catal A 295(1–2):68–76CrossRef
8.
Zurück zum Zitat Xiong H, Zhang Y, Wang S, Li J (2005) Fischer–Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catal Commun 6(8):512–516CrossRef Xiong H, Zhang Y, Wang S, Li J (2005) Fischer–Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catal Commun 6(8):512–516CrossRef
9.
Zurück zum Zitat Borg O, Eri S, Blekkan E, Storsater S, Wigum H, Rytter E, Holmen A (2007) Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248(1):89–100CrossRef Borg O, Eri S, Blekkan E, Storsater S, Wigum H, Rytter E, Holmen A (2007) Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248(1):89–100CrossRef
10.
Zurück zum Zitat Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Rønning M, Rytter E, Holmen A (2009) Fischer–Tropsch synthesis over un-promoted and re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal Today 142(1–2):70–77CrossRef Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Rønning M, Rytter E, Holmen A (2009) Fischer–Tropsch synthesis over un-promoted and re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal Today 142(1–2):70–77CrossRef
11.
Zurück zum Zitat Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer WD, Pendyala VRR, Yen CH, Klettlinger JLS, Davis BH (2014) Fischer–Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25 % Co/Al2O3 catalysts. Appl Catal A 475:314–324CrossRef Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer WD, Pendyala VRR, Yen CH, Klettlinger JLS, Davis BH (2014) Fischer–Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25 % Co/Al2O3 catalysts. Appl Catal A 475:314–324CrossRef
12.
Zurück zum Zitat Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, DeSisto WJ, Frederick BG, Austin RN (2010) Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer–Tropsch catalysts. Appl Catal A 388(1–2):57–67CrossRef Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, DeSisto WJ, Frederick BG, Austin RN (2010) Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer–Tropsch catalysts. Appl Catal A 388(1–2):57–67CrossRef
13.
Zurück zum Zitat Nurunnabi M, Turn SQ (2015) Pore size effects on Ru/SiO2 catalysts with Mn and Zr promoters for Fischer–Tropsch synthesis. Fuel Process Technol 130:155–164CrossRef Nurunnabi M, Turn SQ (2015) Pore size effects on Ru/SiO2 catalysts with Mn and Zr promoters for Fischer–Tropsch synthesis. Fuel Process Technol 130:155–164CrossRef
14.
Zurück zum Zitat Xiong K, Zhang Y, Li J, Liew K (2013) Catalytic properties of Ru nanoparticles embedded on ordered mesoporous carbon with different pore size in Fischer–Tropsch synthesis. J Energy Chem 22(4):560–566CrossRef Xiong K, Zhang Y, Li J, Liew K (2013) Catalytic properties of Ru nanoparticles embedded on ordered mesoporous carbon with different pore size in Fischer–Tropsch synthesis. J Energy Chem 22(4):560–566CrossRef
15.
Zurück zum Zitat Prieto G, Martínez A, Murciano R, Arribas MA (2009) Cobalt supported on morphologically tailored SBA-15 mesostructures: the impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Appl Catal A 367(1–2):146–156CrossRef Prieto G, Martínez A, Murciano R, Arribas MA (2009) Cobalt supported on morphologically tailored SBA-15 mesostructures: the impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Appl Catal A 367(1–2):146–156CrossRef
16.
Zurück zum Zitat Martínez A, Prieto G, Rollán J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263(2):292–305CrossRef Martínez A, Prieto G, Rollán J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263(2):292–305CrossRef
17.
Zurück zum Zitat Liu C, Li J, Zhang Y, Chen S, Zhu J, Liew K (2012) Fischer–Tropsch synthesis over cobalt catalysts supported on nanostructured alumina with various morphologies. J Mol Catal A 363–364:335–342CrossRef Liu C, Li J, Zhang Y, Chen S, Zhu J, Liew K (2012) Fischer–Tropsch synthesis over cobalt catalysts supported on nanostructured alumina with various morphologies. J Mol Catal A 363–364:335–342CrossRef
18.
Zurück zum Zitat Čejka J (2003) Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl Catal A 254(2):327–338CrossRef Čejka J (2003) Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl Catal A 254(2):327–338CrossRef
19.
Zurück zum Zitat Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77(1):1–45CrossRef Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77(1):1–45CrossRef
20.
Zurück zum Zitat Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41CrossRef Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41CrossRef
21.
Zurück zum Zitat Zeng S-h Su, H-q Ding N, S-y Yu, K-w Liu (2014) Co/SBA-16: highly selective Fischer–Tropsch synthesis catalyst towards diesel fraction. J Fuel Chem Technol 42(4):449–454CrossRef Zeng S-h Su, H-q Ding N, S-y Yu, K-w Liu (2014) Co/SBA-16: highly selective Fischer–Tropsch synthesis catalyst towards diesel fraction. J Fuel Chem Technol 42(4):449–454CrossRef
22.
Zurück zum Zitat Lesaint C, Glomm WR, Borg Ø, Eri S, Rytter E, Øye G (2008) Synthesis and characterization of mesoporous alumina with large pore size and their performance in Fischer–Tropsch synthesis. Appl Catal A 351(1):131–135CrossRef Lesaint C, Glomm WR, Borg Ø, Eri S, Rytter E, Øye G (2008) Synthesis and characterization of mesoporous alumina with large pore size and their performance in Fischer–Tropsch synthesis. Appl Catal A 351(1):131–135CrossRef
23.
Zurück zum Zitat Lesaint C, Kleppa G, Arla D, Glomm WR, Øye G (2009) Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route. Microporous Mesoporous Mater 119(1–3):245–251CrossRef Lesaint C, Kleppa G, Arla D, Glomm WR, Øye G (2009) Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route. Microporous Mesoporous Mater 119(1–3):245–251CrossRef
24.
Zurück zum Zitat Liu Y, Luo J, Girleanu M, Ersen O, Pham-Huu C, Meny C (2014) Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. J Catal 318:179–192CrossRef Liu Y, Luo J, Girleanu M, Ersen O, Pham-Huu C, Meny C (2014) Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. J Catal 318:179–192CrossRef
25.
Zurück zum Zitat Zhang X, Su H, Yang X (2012) Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer–Tropsch synthesis. J Mol Catal A 360:16–25CrossRef Zhang X, Su H, Yang X (2012) Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer–Tropsch synthesis. J Mol Catal A 360:16–25CrossRef
26.
Zurück zum Zitat Witoon T, Chareonpanich M, Limtrakul J (2011) Effect of hierarchical meso-macroporous silica supports on Fischer–Tropsch synthesis using cobalt catalyst. Fuel Process Technol 92(8):1498–1505CrossRef Witoon T, Chareonpanich M, Limtrakul J (2011) Effect of hierarchical meso-macroporous silica supports on Fischer–Tropsch synthesis using cobalt catalyst. Fuel Process Technol 92(8):1498–1505CrossRef
27.
Zurück zum Zitat Liu Q, Wang A, Wang X, Gao P, Wang X, Zhang T (2008) Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous Mesoporous Mater 111(1–3):323–333CrossRef Liu Q, Wang A, Wang X, Gao P, Wang X, Zhang T (2008) Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous Mesoporous Mater 111(1–3):323–333CrossRef
28.
Zurück zum Zitat Huang B, Bartholomew CH, Smith SJ, Woodfield BF (2013) Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures. Microporous Mesoporous Mater 165:70–78CrossRef Huang B, Bartholomew CH, Smith SJ, Woodfield BF (2013) Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures. Microporous Mesoporous Mater 165:70–78CrossRef
29.
Zurück zum Zitat Merino D PI, Sanz O, Montes M (2014) Preparación de soportes de porosidad controlada para la Síntesis de Fischer–Tropsch. In: Proceedings of CICAT XXIV Medellin:P162 Merino D PI, Sanz O, Montes M (2014) Preparación de soportes de porosidad controlada para la Síntesis de Fischer–Tropsch. In: Proceedings of CICAT XXIV Medellin:P162
30.
Zurück zum Zitat Echave FJ, Sanz O, Montes M (2014) Washcoating of microchannel reactors with PdZnO catalyst for methanol steam reforming. Appl Catal A 474:159–167CrossRef Echave FJ, Sanz O, Montes M (2014) Washcoating of microchannel reactors with PdZnO catalyst for methanol steam reforming. Appl Catal A 474:159–167CrossRef
31.
Zurück zum Zitat Soled S, Iglesia E, Fiato R, Baumgartner J, Vroman H, Miseo S (2003) Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer–Tropsch Catalysts. Top Catal 26(1–4):101–109CrossRef Soled S, Iglesia E, Fiato R, Baumgartner J, Vroman H, Miseo S (2003) Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer–Tropsch Catalysts. Top Catal 26(1–4):101–109CrossRef
32.
Zurück zum Zitat Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts. J Catal 156(1):85–95CrossRef Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts. J Catal 156(1):85–95CrossRef
33.
Zurück zum Zitat Malet P, Caballero A (1988) The selection of experimental conditions in temperature-programmed reduction experiments. J Chem Soc Faraday Trans 1 84(7):2369–2375CrossRef Malet P, Caballero A (1988) The selection of experimental conditions in temperature-programmed reduction experiments. J Chem Soc Faraday Trans 1 84(7):2369–2375CrossRef
34.
Zurück zum Zitat Gregg SJ, Sing KSW (1991) Adsorption, surface area, and porosity. Academic Press, San Diego Gregg SJ, Sing KSW (1991) Adsorption, surface area, and porosity. Academic Press, San Diego
35.
Zurück zum Zitat Huang B, Bartholomew CH, Woodfield BF (2014) Facile synthesis of mesoporous γ-alumina with tunable pore size: the effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides. Microporous Mesoporous Mater 183:37–47CrossRef Huang B, Bartholomew CH, Woodfield BF (2014) Facile synthesis of mesoporous γ-alumina with tunable pore size: the effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides. Microporous Mesoporous Mater 183:37–47CrossRef
36.
Zurück zum Zitat Zhu HY, Gao XP, Song DY, Bai YQ, Ringer SP, Gao Z, Xi YX, Martens W, Riches JD, Frost RL (2004) Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles. J Phys Chem B 108(14):4245–4247CrossRef Zhu HY, Gao XP, Song DY, Bai YQ, Ringer SP, Gao Z, Xi YX, Martens W, Riches JD, Frost RL (2004) Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles. J Phys Chem B 108(14):4245–4247CrossRef
37.
Zurück zum Zitat d’Espinose de la Caillerie J-B, Bobin C, Rebours B, Clause O (1995) Alumina/water interfacial phenomena during impregnation. Stud Surf Sci Catal 91:169–184CrossRef d’Espinose de la Caillerie J-B, Bobin C, Rebours B, Clause O (1995) Alumina/water interfacial phenomena during impregnation. Stud Surf Sci Catal 91:169–184CrossRef
38.
Zurück zum Zitat Ernst B, Libs S, Chaumette P, Kiennemann A (1999) Preparation and characterization of Fischer–Tropsch active Co/SiO2 catalysts. Appl Catal A 186(1–2):145–168CrossRef Ernst B, Libs S, Chaumette P, Kiennemann A (1999) Preparation and characterization of Fischer–Tropsch active Co/SiO2 catalysts. Appl Catal A 186(1–2):145–168CrossRef
39.
Zurück zum Zitat Panpranot J, Goodwin JG Jr, Sayari A (2002) CO Hydrogenation on Ru-Promoted Co/MCM-41 catalysts. J Catal 211(2):530–539CrossRef Panpranot J, Goodwin JG Jr, Sayari A (2002) CO Hydrogenation on Ru-Promoted Co/MCM-41 catalysts. J Catal 211(2):530–539CrossRef
40.
Zurück zum Zitat Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964CrossRef Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964CrossRef
Metadaten
Titel
On the Way to a More Open Porous Network of a Co–Re/Al2O3 Catalyst for Fischer–Tropsch Synthesis: Pore Size and Particle Size Effects on Its Performance
verfasst von
David Merino
Iñigo Pérez-Miqueo
Oihane Sanz
Mario Montes
Publikationsdatum
06.08.2015
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 2-4/2016
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0436-3

Weitere Artikel der Ausgabe 2-4/2016

Topics in Catalysis 2-4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.