Skip to main content

2016 | OriginalPaper | Buchkapitel

8. One- and Multi-electron Pathways for the Reduction of CO2 into C1 and C1+ Energy-Richer Molecules: Some Thermodynamic and Kinetic Facts

verfasst von : Michele Aresta, Angela Dibenedetto, Eugenio Quaranta

Erschienen in: Reaction Mechanisms in Carbon Dioxide Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the mechanism of reduction of “free” and coordinated CO2 by electron transfer. One-e and multi-e transfer pathways are compared energetically and their role in the conversion of CO2 into higher energy C1 or C1+-species is highlighted. The state of the knowledge is presented through the analysis of reference cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99CrossRef Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99CrossRef
2.
Zurück zum Zitat Schneider J, Jia H, Muckermana JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051CrossRef Schneider J, Jia H, Muckermana JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051CrossRef
3.
Zurück zum Zitat Bolinger CM, Story N, Sullivam BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587CrossRef Bolinger CM, Story N, Sullivam BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587CrossRef
4.
Zurück zum Zitat Bruce MRM, Megehee E, Sullivan BP, Thorp H, O’Toole TR, Downard A, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by associative activation. Organometallics 7:238–240CrossRef Bruce MRM, Megehee E, Sullivan BP, Thorp H, O’Toole TR, Downard A, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by associative activation. Organometallics 7:238–240CrossRef
5.
Zurück zum Zitat Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368CrossRef Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368CrossRef
6.
Zurück zum Zitat Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2-. J Am Chem Soc 104:6834–6836CrossRef Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2-. J Am Chem Soc 104:6834–6836CrossRef
7.
Zurück zum Zitat Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Inorg Chem 44:2326–2336CrossRef Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Inorg Chem 44:2326–2336CrossRef
8.
Zurück zum Zitat Gu J, Wuttig A, Krizan JW, Hu Y, Detweller ZM, Cava RJ, Bocarsly A (2013) Mg-doped CuFeO2 photocatalysts for photoelectrochemical reduction of carbon dioxide. J Phys Chem 117:12415–12422 Gu J, Wuttig A, Krizan JW, Hu Y, Detweller ZM, Cava RJ, Bocarsly A (2013) Mg-doped CuFeO2 photocatalysts for photoelectrochemical reduction of carbon dioxide. J Phys Chem 117:12415–12422
9.
Zurück zum Zitat Fisher B, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363CrossRef Fisher B, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363CrossRef
10.
Zurück zum Zitat Beley M, Collin JP, Ruppert R, Sauvage JP (1984) Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc Chem Commun 1315–1316 Beley M, Collin JP, Ruppert R, Sauvage JP (1984) Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc Chem Commun 1315–1316
11.
Zurück zum Zitat Hammuche M, Lexa D, Momenteau M, Saveant JP (1991) Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J Am Chem Soc 113:8455–8466CrossRef Hammuche M, Lexa D, Momenteau M, Saveant JP (1991) Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J Am Chem Soc 113:8455–8466CrossRef
12.
Zurück zum Zitat Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778CrossRef Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778CrossRef
13.
Zurück zum Zitat Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2-bipyridine). J Chem Soc Chem Comm 328–330 Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2-bipyridine). J Chem Soc Chem Comm 328–330
14.
Zurück zum Zitat Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-. Organometallics 6:181–186CrossRef Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-. Organometallics 6:181–186CrossRef
15.
Zurück zum Zitat DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764CrossRef DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764CrossRef
16.
Zurück zum Zitat Raebiger JW, Turner JW, Noll BC, Curtis CJ, Miedaner A, Cox B, DuBois DL (2006) Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25:3345–3351CrossRef Raebiger JW, Turner JW, Noll BC, Curtis CJ, Miedaner A, Cox B, DuBois DL (2006) Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25:3345–3351CrossRef
17.
Zurück zum Zitat Dubois DL (1997) Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments Inorg Chem 19:307–325CrossRef Dubois DL (1997) Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments Inorg Chem 19:307–325CrossRef
18.
Zurück zum Zitat DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(.mu-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758CrossRef DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(.mu-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758CrossRef
19.
Zurück zum Zitat Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(m3-L)(m3-X)(m2-dppm)3]n + (L = I-, Br-, CO, CNR; X = I-, Br-; n = 0,1; dppm = Ph2PCH2PPh2): novel physical properties and the fermi resonance of symmetric m3-h1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207CrossRef Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(m3-L)(m3-X)(m2-dppm)3]n + (L = I-, Br-, CO, CNR; X = I-, Br-; n = 0,1; dppm = Ph2PCH2PPh2): novel physical properties and the fermi resonance of symmetric m3-h1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207CrossRef
20.
Zurück zum Zitat Wittrig RE, Ferrence GM, Washington J, Kubiak CP (1998) Infrared spectroelectrochemical and electrochemical kinetics studies of the reaction of nickel cluster radicals [Ni3(μ2-dppm)3(μ3-L) (μ3I)]•(L = CNR, R = CH3, i-C3H7, C6H11, CH2C6H5, t-C4H9, 2,6-Me2C6H3; L = CO) with carbon dioxide. Inorg Chim Acta 270:111–117CrossRef Wittrig RE, Ferrence GM, Washington J, Kubiak CP (1998) Infrared spectroelectrochemical and electrochemical kinetics studies of the reaction of nickel cluster radicals [Ni32-dppm)33-L) (μ3I)]•(L = CNR, R = CH3, i-C3H7, C6H11, CH2C6H5, t-C4H9, 2,6-Me2C6H3; L = CO) with carbon dioxide. Inorg Chim Acta 270:111–117CrossRef
21.
Zurück zum Zitat Ferrence GM, Fanwick PE, Kubiak CP (1996) A telluride capped trinuclear nickel cluster [Ni3(μ3-Te)2(μ-PPh2CH2PPh2)3]n+ with four accessible redox states (n=–1, 0, 1, 2). J Chem Soc Chem Commun 1575–1576 Ferrence GM, Fanwick PE, Kubiak CP (1996) A telluride capped trinuclear nickel cluster [Ni33-Te)2(μ-PPh2CH2PPh2)3]n+ with four accessible redox states (n=–1, 0, 1, 2). J Chem Soc Chem Commun 1575–1576
22.
Zurück zum Zitat Haines RJ, Wittrig RE, Kubiak CP (1994) Electrocatalytic reduction of carbon dioxide by the binuclear copper complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2. Inorg Chem 33:4723–4728CrossRef Haines RJ, Wittrig RE, Kubiak CP (1994) Electrocatalytic reduction of carbon dioxide by the binuclear copper complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2. Inorg Chem 33:4723–4728CrossRef
23.
Zurück zum Zitat Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031CrossRef Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031CrossRef
24.
Zurück zum Zitat Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem 114:14220–14223 Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem 114:14220–14223
25.
Zurück zum Zitat Smieja JM, Sampson MD, Grice AF, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52:2484–2491CrossRef Smieja JM, Sampson MD, Grice AF, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52:2484–2491CrossRef
26.
Zurück zum Zitat Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRef Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRef
27.
Zurück zum Zitat Frese KW Jr, Canfield D (1984) Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J Electrochem Soc 131:2518–2522CrossRef Frese KW Jr, Canfield D (1984) Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J Electrochem Soc 131:2518–2522CrossRef
28.
Zurück zum Zitat Willner I, Maidan R, Mandler D, Durr H, Dorr G, Zengerle K (1987) Photosensitized reduction of CO2 to CH4 and H2 evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086CrossRef Willner I, Maidan R, Mandler D, Durr H, Dorr G, Zengerle K (1987) Photosensitized reduction of CO2 to CH4 and H2 evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086CrossRef
29.
Zurück zum Zitat Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-alloys. Electrocatalysis 3:139–146CrossRef Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-alloys. Electrocatalysis 3:139–146CrossRef
30.
Zurück zum Zitat Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839CrossRef Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839CrossRef
31.
Zurück zum Zitat Stephen H, Stephen T (eds) (1963) Solubilities of inorganic and organic compounds, vol 1, Binary systems, Part II. Pergamon, Oxford, pp 1057–1076 Stephen H, Stephen T (eds) (1963) Solubilities of inorganic and organic compounds, vol 1, Binary systems, Part II. Pergamon, Oxford, pp 1057–1076
32.
Zurück zum Zitat Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of CO2 under high pressure on various electrodes in aqueous electrolytes. J Electroanal Chem 391:141–147CrossRef Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of CO2 under high pressure on various electrodes in aqueous electrolytes. J Electroanal Chem 391:141–147CrossRef
33.
Zurück zum Zitat Hara K, Kudo A, Sakata T, Watanabe M (1995) High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J Electrochem Soc 142:L57–L59CrossRef Hara K, Kudo A, Sakata T, Watanabe M (1995) High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J Electrochem Soc 142:L57–L59CrossRef
34.
Zurück zum Zitat Amatore C, Savéant J-M (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023CrossRef Amatore C, Savéant J-M (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023CrossRef
35.
Zurück zum Zitat Gangi DA, Durand RR Jr (1986) Binding of carbon dioxide to cobalt and nickel tetra-aza macrocycles. J Chem Soc Chem Commun 697–699 Gangi DA, Durand RR Jr (1986) Binding of carbon dioxide to cobalt and nickel tetra-aza macrocycles. J Chem Soc Chem Commun 697–699
36.
Zurück zum Zitat Fujita E, Creutz N, Sutin N, Szalda DJ (1991) Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding. J Am Chem Soc 113:343–353CrossRef Fujita E, Creutz N, Sutin N, Szalda DJ (1991) Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding. J Am Chem Soc 113:343–353CrossRef
37.
Zurück zum Zitat Fujita E, Szalda DJ, Creutz N, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871CrossRef Fujita E, Szalda DJ, Creutz N, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871CrossRef
38.
Zurück zum Zitat Ogata T, Yanagida S, Brunshwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716CrossRef Ogata T, Yanagida S, Brunshwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716CrossRef
39.
Zurück zum Zitat Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1991) Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution. J Am Chem Soc 113:3361–3371CrossRef Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1991) Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution. J Am Chem Soc 113:3361–3371CrossRef
40.
Zurück zum Zitat Fujita E, Creutz N, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles. Evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662CrossRef Fujita E, Creutz N, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles. Evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662CrossRef
41.
Zurück zum Zitat Fujita E, Furenlid LR, Renner MW (1997) Direct XANES evidence for charge transfer in Co–CO2 complexes. J Am Chem Soc 119:4549–4550CrossRef Fujita E, Furenlid LR, Renner MW (1997) Direct XANES evidence for charge transfer in Co–CO2 complexes. J Am Chem Soc 119:4549–4550CrossRef
42.
Zurück zum Zitat Fujita E, van Eldik R (1998) Effect of pressure on the reversible binding of acetonitrile to the “Co(I)-CO2” adduct to form cobalt(III) carboxylate. Inorg Chem 37:360–362CrossRef Fujita E, van Eldik R (1998) Effect of pressure on the reversible binding of acetonitrile to the “Co(I)-CO2” adduct to form cobalt(III) carboxylate. Inorg Chem 37:360–362CrossRef
43.
Zurück zum Zitat Schmidt MH, Miskelly GM, Lewis NS (1990) Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles. J Am Chem Soc 112:3420–3426CrossRef Schmidt MH, Miskelly GM, Lewis NS (1990) Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles. J Am Chem Soc 112:3420–3426CrossRef
44.
Zurück zum Zitat Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1989) A dissociative pathway for equilibration of a hydrido CoL(H)2+ complex with CO2 and CO: ligand binding constants in the macrocyclic [14]dienecobalt(I) system. J Am Chem Soc 111:1153–1154CrossRef Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1989) A dissociative pathway for equilibration of a hydrido CoL(H)2+ complex with CO2 and CO: ligand binding constants in the macrocyclic [14]dienecobalt(I) system. J Am Chem Soc 111:1153–1154CrossRef
45.
Zurück zum Zitat Fujita E, Wishart JF, van Eldik R (2002) Mechanistic information from pressure acceleration of hydride formation via proton binding to a cobalt(I) macrocycle. Inorg Chem 41:1579–1583CrossRef Fujita E, Wishart JF, van Eldik R (2002) Mechanistic information from pressure acceleration of hydride formation via proton binding to a cobalt(I) macrocycle. Inorg Chem 41:1579–1583CrossRef
46.
Zurück zum Zitat Sasaki S (1992) An ab initio MO/SD-CI study of model complexes of intermediates in electrochemical reduction of CO2 catalyzed by NiCl2(cyclam). J Am Chem Soc 114:2055–2062CrossRef Sasaki S (1992) An ab initio MO/SD-CI study of model complexes of intermediates in electrochemical reduction of CO2 catalyzed by NiCl2(cyclam). J Am Chem Soc 114:2055–2062CrossRef
47.
Zurück zum Zitat Fujita E, Haff J, Sanzenbacker R, Elias H (1994) High electrocatalytic activity of RRSS-[NiIIHTIM](ClO4)2 and [NiIIDMC](ClO4)2 for carbon dioxide reduction (HTIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradecane, DMC = C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane). Inorg Chem 33:4627–4628CrossRef Fujita E, Haff J, Sanzenbacker R, Elias H (1994) High electrocatalytic activity of RRSS-[NiIIHTIM](ClO4)2 and [NiIIDMC](ClO4)2 for carbon dioxide reduction (HTIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradecane, DMC = C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane). Inorg Chem 33:4627–4628CrossRef
48.
Zurück zum Zitat Gagné RR, Ingle DM (1981) One-electron-reduced nickel(II)-macrocyclic ligand complexes. Four-coordinate nickel(I) species and nickel(II)-ligand radical species which form paramagnetic, five-coordinate nickel(I) adducts. Inorg Chem 20:420–425CrossRef Gagné RR, Ingle DM (1981) One-electron-reduced nickel(II)-macrocyclic ligand complexes. Four-coordinate nickel(I) species and nickel(II)-ligand radical species which form paramagnetic, five-coordinate nickel(I) adducts. Inorg Chem 20:420–425CrossRef
49.
Zurück zum Zitat Furenlid LR, Renner MW, Szalda DJ, Fujita E (1991) EXAFS studies of nickel(II), nickel(I), and Ni(I)-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate. J Am Chem Soc 113:883–892CrossRef Furenlid LR, Renner MW, Szalda DJ, Fujita E (1991) EXAFS studies of nickel(II), nickel(I), and Ni(I)-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate. J Am Chem Soc 113:883–892CrossRef
50.
Zurück zum Zitat Kelly CA, Mulazzani QG, Blinn EL, Rodgers MAJ (1996) Kinetics of CO addition to Ni(cyclam) + in aqueous solution. Inorg Chem 35:5122–5126CrossRef Kelly CA, Mulazzani QG, Blinn EL, Rodgers MAJ (1996) Kinetics of CO addition to Ni(cyclam) + in aqueous solution. Inorg Chem 35:5122–5126CrossRef
51.
Zurück zum Zitat Kelly CA, Mulazzani QG, Venturi M, Blinn EL, Rodgers MAJ (1995) The thermodynamics and kinetics of CO2 and H+ binding to Ni(cyclam) + in aqueous solution. J Am Chem Soc 117:4911–4919CrossRef Kelly CA, Mulazzani QG, Venturi M, Blinn EL, Rodgers MAJ (1995) The thermodynamics and kinetics of CO2 and H+ binding to Ni(cyclam) + in aqueous solution. J Am Chem Soc 117:4911–4919CrossRef
52.
Zurück zum Zitat Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRef Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRef
53.
Zurück zum Zitat Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482CrossRef Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482CrossRef
54.
Zurück zum Zitat Agarwal J, Shaw TW, Stanton CJ III, Majetich GF, Bocarsly AB, Schaefer HF III (2014) NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew Chem Int Ed 53:5152–5155CrossRef Agarwal J, Shaw TW, Stanton CJ III, Majetich GF, Bocarsly AB, Schaefer HF III (2014) NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew Chem Int Ed 53:5152–5155CrossRef
55.
Zurück zum Zitat Huang D, Holm RH (2010) Reactions of the terminal NiII–OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J Am Chem Soc 132:4693–4701CrossRef Huang D, Holm RH (2010) Reactions of the terminal NiII–OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J Am Chem Soc 132:4693–4701CrossRef
56.
Zurück zum Zitat Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recl Trav Chim Pays-Bas 103:288–295CrossRef Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recl Trav Chim Pays-Bas 103:288–295CrossRef
57.
Zurück zum Zitat Kelly CP, Cramer CJ, Trulher DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081CrossRef Kelly CP, Cramer CJ, Trulher DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081CrossRef
58.
Zurück zum Zitat Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023 and references to same authors Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023 and references to same authors
59.
Zurück zum Zitat Yan Y, Gu J, Bocarsly AB (2014) Hydrogen bonded pyridine dimer: a possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol Air Qual Res 14:515–521 Yan Y, Gu J, Bocarsly AB (2014) Hydrogen bonded pyridine dimer: a possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol Air Qual Res 14:515–521
60.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2013) The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Philos Trans A Math Phys Eng Sci 371:20120111CrossRef Aresta M, Dibenedetto A, Angelini A (2013) The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Philos Trans A Math Phys Eng Sci 371:20120111CrossRef
61.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–4:65–73CrossRef Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–4:65–73CrossRef
62.
Zurück zum Zitat Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378CrossRef Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378CrossRef
63.
Zurück zum Zitat Baran T, Dibenedetto A, Aresta M, Kruczała K, Macyk W (2014) Photocatalytic carboxylation of organic substrates with carbon dioxide at zinc sulfide with deposited ruthenium nanoparticles. ChemPlusChem 79:708–715CrossRef Baran T, Dibenedetto A, Aresta M, Kruczała K, Macyk W (2014) Photocatalytic carboxylation of organic substrates with carbon dioxide at zinc sulfide with deposited ruthenium nanoparticles. ChemPlusChem 79:708–715CrossRef
64.
Zurück zum Zitat Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565CrossRef Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565CrossRef
65.
Zurück zum Zitat Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2-water co-processing to afford energy rich molecules. In: Rozhkova EA, Ariga K (eds) From molecules to materials-pathways to artificial photosynthesis. Springer, V, 400 p Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2-water co-processing to afford energy rich molecules. In: Rozhkova EA, Ariga K (eds) From molecules to materials-pathways to artificial photosynthesis. Springer, V, 400 p
66.
Zurück zum Zitat Aresta M, Dibenedetto A, Macyk W, Baran T (2013) Fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemoenzimatico MI2013A001135 Aresta M, Dibenedetto A, Macyk W, Baran T (2013) Fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemoenzimatico MI2013A001135
67.
Zurück zum Zitat Kumar B, Llorente M, Froehlich J, Dang T, Satrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569CrossRef Kumar B, Llorente M, Froehlich J, Dang T, Satrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569CrossRef
68.
Zurück zum Zitat Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS et al (2000) Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J Phys Chem A 104:11332–11339CrossRef Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS et al (2000) Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J Phys Chem A 104:11332–11339CrossRef
69.
Zurück zum Zitat Grodkowski J, Neta P (2000) Cobalt corrin catalyzed photoreduction of CO2. J Phys Chem A 104:1848–1853CrossRef Grodkowski J, Neta P (2000) Cobalt corrin catalyzed photoreduction of CO2. J Phys Chem A 104:1848–1853CrossRef
70.
Zurück zum Zitat Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538CrossRef Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538CrossRef
71.
Zurück zum Zitat Ulman M, Tinnemans AHA, Mackor A, Aurian-Blajeni B, Halmann M (1982) Photoreduction of carbon dioxide to formic acid, formaldehyde, methanol, acetaldehyde and ethanol using aqueous suspensions of strontium titanate with transition metal additives. Int J Sol Energy 1(3):213–222CrossRef Ulman M, Tinnemans AHA, Mackor A, Aurian-Blajeni B, Halmann M (1982) Photoreduction of carbon dioxide to formic acid, formaldehyde, methanol, acetaldehyde and ethanol using aqueous suspensions of strontium titanate with transition metal additives. Int J Sol Energy 1(3):213–222CrossRef
72.
Zurück zum Zitat Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine) tricarbonyl-chloro-rhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69:1990–2012CrossRef Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine) tricarbonyl-chloro-rhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69:1990–2012CrossRef
73.
Zurück zum Zitat Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T (1996) Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+. J Photochem Photobiol A Chem 96:171–174CrossRef Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T (1996) Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+. J Photochem Photobiol A Chem 96:171–174CrossRef
74.
Zurück zum Zitat Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–979CrossRef Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–979CrossRef
75.
Zurück zum Zitat Bradley MG, Tysak T, Graves DJ, Viachiopoulos NA (1983) Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconducting electrodes. J Chem Soc Chem Commun 7:349–350CrossRef Bradley MG, Tysak T, Graves DJ, Viachiopoulos NA (1983) Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconducting electrodes. J Chem Soc Chem Commun 7:349–350CrossRef
76.
Zurück zum Zitat Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef
77.
Zurück zum Zitat Zafrir M, Ulman M, Zuckerman Y, Halmann M (1983) Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system. J Electroanal Chem 159:373–389CrossRef Zafrir M, Ulman M, Zuckerman Y, Halmann M (1983) Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system. J Electroanal Chem 159:373–389CrossRef
78.
Zurück zum Zitat Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T (2010) Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun 46:6944–6946CrossRef Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T (2010) Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun 46:6944–6946CrossRef
79.
Zurück zum Zitat Petit J-P, Chartier P, Beley M, Deville JP (1989) Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium. J Electroanal Chem 269:267–281CrossRef Petit J-P, Chartier P, Beley M, Deville JP (1989) Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium. J Electroanal Chem 269:267–281CrossRef
80.
Zurück zum Zitat Flaisher H, Tenne R, Halmann M (1996) Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection. J Electroanal Chem 402(1–2):97–105CrossRef Flaisher H, Tenne R, Halmann M (1996) Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection. J Electroanal Chem 402(1–2):97–105CrossRef
81.
Zurück zum Zitat Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D et al (2011) Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J Am Chem Soc 133:6922–6925CrossRef Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D et al (2011) Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J Am Chem Soc 133:6922–6925CrossRef
82.
Zurück zum Zitat Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRef Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRef
83.
Zurück zum Zitat Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions: consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677CrossRef Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions: consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677CrossRef
84.
Zurück zum Zitat Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes: evidence for Fermi level pinning. J Am Chem Soc 102:3683–3688CrossRef Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes: evidence for Fermi level pinning. J Am Chem Soc 102:3683–3688CrossRef
85.
Zurück zum Zitat Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRef Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRef
86.
Zurück zum Zitat Saveant JM, Vianello E (1962) Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim Acta 8:905–923CrossRef Saveant JM, Vianello E (1962) Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim Acta 8:905–923CrossRef
87.
Zurück zum Zitat Aurian-Blajeni B, Taniguchi I, Bockris JOM (1983) Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J Electroanal Chem Interf Electrochem 149:291–293CrossRef Aurian-Blajeni B, Taniguchi I, Bockris JOM (1983) Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J Electroanal Chem Interf Electrochem 149:291–293CrossRef
88.
Zurück zum Zitat Ogura K, Yoshida I (1987) Electrocatalytic reduction of carbon dioxide to methanol. VI. Use of a solar cell and comparison with that of carbon monoxide. Electrochim Acta 32:1191–1195CrossRef Ogura K, Yoshida I (1987) Electrocatalytic reduction of carbon dioxide to methanol. VI. Use of a solar cell and comparison with that of carbon monoxide. Electrochim Acta 32:1191–1195CrossRef
89.
Zurück zum Zitat Ogura K, Yamada M, Nakayama M, Endo N (1998) Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source. Stud Surf Sci Catal 114:207–212CrossRef Ogura K, Yamada M, Nakayama M, Endo N (1998) Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source. Stud Surf Sci Catal 114:207–212CrossRef
90.
Zurück zum Zitat Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133CrossRef Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133CrossRef
91.
Zurück zum Zitat Schlager S (2013) Electrochemical reduction of CO2 with immobilized dehydrogenases enzymes, MRS Fall meeting and exhibition, Boston, MA Schlager S (2013) Electrochemical reduction of CO2 with immobilized dehydrogenases enzymes, MRS Fall meeting and exhibition, Boston, MA
92.
Zurück zum Zitat Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S, Yoshida N, Nonomura S, Nakato Y (2009) Efficient solar water splitting with a composite n-Si/p.CuI/n-i-p a-Si/n-p GaP/RuO2 semiconductor electrode. J Phys Chem C 113:14575–14581CrossRef Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S, Yoshida N, Nonomura S, Nakato Y (2009) Efficient solar water splitting with a composite n-Si/p.CuI/n-i-p a-Si/n-p GaP/RuO2 semiconductor electrode. J Phys Chem C 113:14575–14581CrossRef
93.
Zurück zum Zitat Dang T, Ramsaran R, Roy S, Froehlich J, Wang J, Kubiac CP (2011) Design of a high-throughput 25-well parallel electrolyzer for the accelerated discovery of CO2 reduction catalysts via a combinatorial approach. Electroanalysis 23:2335–2342CrossRef Dang T, Ramsaran R, Roy S, Froehlich J, Wang J, Kubiac CP (2011) Design of a high-throughput 25-well parallel electrolyzer for the accelerated discovery of CO2 reduction catalysts via a combinatorial approach. Electroanalysis 23:2335–2342CrossRef
94.
Zurück zum Zitat Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrog Energy 28:1167–1169CrossRef Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrog Energy 28:1167–1169CrossRef
95.
Zurück zum Zitat Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical fibres photo-bioreator: effects of metal addition and catalyst carrier. Appl Cat A 335:112–120CrossRef Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical fibres photo-bioreator: effects of metal addition and catalyst carrier. Appl Cat A 335:112–120CrossRef
96.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742CrossRef Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742CrossRef
97.
Zurück zum Zitat den Boef G (1977) Theoretische grondslagen van de analyse in waterige oplossingen, 4th edn. Elsevier, Amsterdam/Brussel den Boef G (1977) Theoretische grondslagen van de analyse in waterige oplossingen, 4th edn. Elsevier, Amsterdam/Brussel
Metadaten
Titel
One- and Multi-electron Pathways for the Reduction of CO2 into C1 and C1+ Energy-Richer Molecules: Some Thermodynamic and Kinetic Facts
verfasst von
Michele Aresta
Angela Dibenedetto
Eugenio Quaranta
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46831-9_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.