Skip to main content
Erschienen in: Quantum Information Processing 9/2018

01.09.2018

One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system

verfasst von: Tong Liu, Bao-Qing Guo, Yang Zhang, Chang-Shui Yu, Wei-Ning Zhang

Erschienen in: Quantum Information Processing | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Circuit quantum electrodynamics system composed of many qubits and resonators may provide an excellent way to realize large-scale quantum information processing (QIP). Because of key role for large-scale QIP and quantum computation, multi-qubit gates have drawn intensive attention recently. Here, we present a one-step method to achieve a multi-target-qubit controlled phase gate in a multi-resonator system, which possesses a common control qubit and multiple different target qubits distributed in their respective resonators. Noteworthily, the implementation of this multi-qubit phase gate does not require classical pulses, and the gate operation time is independent of the number of qubits. Besides, the proposed scheme can in principle be adapted to a general type of qubits like natural atoms, quantum dots, and solid-state qubits (e.g., superconducting qubits and NV centers).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)ADSCrossRef Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)ADSCrossRef
2.
Zurück zum Zitat You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)ADSCrossRef You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)ADSCrossRef
3.
Zurück zum Zitat Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRef Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRef
4.
Zurück zum Zitat Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)ADSCrossRef Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)ADSCrossRef
5.
Zurück zum Zitat You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)ADSCrossRef You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)ADSCrossRef
6.
Zurück zum Zitat Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRef Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRef
7.
Zurück zum Zitat Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRef Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRef
8.
Zurück zum Zitat Chow, J.M., Gambetta, J.M., Córcoles, A.D., Merkel, S.T., Smolin, J.A., Rigetti, C., Poletto, S., Keefe, G.A., Rothwell, M.B., Rozen, J.R., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)ADSCrossRef Chow, J.M., Gambetta, J.M., Córcoles, A.D., Merkel, S.T., Smolin, J.A., Rigetti, C., Poletto, S., Keefe, G.A., Rothwell, M.B., Rozen, J.R., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)ADSCrossRef
9.
Zurück zum Zitat Chang, J.B., Vissers, M.R., Corcoles, A.D., Sandberg, M., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)ADSCrossRef Chang, J.B., Vissers, M.R., Corcoles, A.D., Sandberg, M., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)ADSCrossRef
10.
Zurück zum Zitat Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J.Y., Neill, C., O’Malley, P.J.J., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)ADSCrossRef Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J.Y., Neill, C., O’Malley, P.J.J., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)ADSCrossRef
11.
Zurück zum Zitat Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature Commun. 5, 4015 (2014)ADSCrossRef Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature Commun. 5, 4015 (2014)ADSCrossRef
12.
Zurück zum Zitat Chen, Y., Neill, C., Roushan, P., Leung, N., Fang, M., Barends, R., Kelly, J., Campbell, B., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Megrant, A., Mutus, J.Y., O’Malley, P.J.J., Quintana, C.M., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Geller, M.R., Cleland, A.N., Martinis, J.M.: Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)ADSCrossRef Chen, Y., Neill, C., Roushan, P., Leung, N., Fang, M., Barends, R., Kelly, J., Campbell, B., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Megrant, A., Mutus, J.Y., O’Malley, P.J.J., Quintana, C.M., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Geller, M.R., Cleland, A.N., Martinis, J.M.: Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)ADSCrossRef
13.
Zurück zum Zitat Stern, M., Catelani, G., Kubo, Y., Grezes, C., Bienfait, A., Vion, D., Esteve, D., Bertet, P.: Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014)ADSCrossRef Stern, M., Catelani, G., Kubo, Y., Grezes, C., Bienfait, A., Vion, D., Esteve, D., Bertet, P.: Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014)ADSCrossRef
14.
Zurück zum Zitat Peterer, M.J., Bader, S.J., Jin, X., Yan, F., Kamal, A., Gudmundsen, T.J., Leek, P.J., Orlando, T.P., Oliver, W.D., Gustavsson, S.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)ADSCrossRef Peterer, M.J., Bader, S.J., Jin, X., Yan, F., Kamal, A., Gudmundsen, T.J., Leek, P.J., Orlando, T.P., Oliver, W.D., Gustavsson, S.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)ADSCrossRef
15.
Zurück zum Zitat Pop, I.M., Geerlings, K., Catelani, G., Schoelkopf, R.J., Glazman, L.I., Devore, M.H.: Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014)ADSCrossRef Pop, I.M., Geerlings, K., Catelani, G., Schoelkopf, R.J., Glazman, L.I., Devore, M.H.: Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014)ADSCrossRef
16.
Zurück zum Zitat You, J.Q., Hu, X.D., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)ADSCrossRef You, J.Q., Hu, X.D., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)ADSCrossRef
17.
Zurück zum Zitat Steffen, M., Kumar, S., DiVincenzo, D.P., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B.: High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)ADSCrossRef Steffen, M., Kumar, S., DiVincenzo, D.P., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B.: High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)ADSCrossRef
18.
Zurück zum Zitat Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nature Commun. 7, 12964 (2016)ADSCrossRef Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nature Commun. 7, 12964 (2016)ADSCrossRef
19.
Zurück zum Zitat Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)ADSCrossRef Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)ADSCrossRef
20.
Zurück zum Zitat Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)ADSCrossRef Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)ADSCrossRef
21.
Zurück zum Zitat Forn-Díaz, P., Lisenfeld, J., Marcos, D., Garc ía-Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)ADSCrossRef Forn-Díaz, P., Lisenfeld, J., Marcos, D., Garc ía-Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)ADSCrossRef
22.
Zurück zum Zitat Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)CrossRef Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)CrossRef
23.
Zurück zum Zitat Baust, A., Hoffmann, E., Haeberlein, M., Schwarz, M.J., Eder, P., Goetz, J., Wulschner, F., Xie, E., Zhong, L., Quijandŕa, F., Zueco, D., García Ripoll, J.J., García-Alvarez, L., Romero, G., Solano, E., Fedorov, K.G., Menzel, E.P., Deppe, F., Marx, A., Gross, R.: Ultrastrong coupling in two-resonator circuit QED. Phys. Rev. B 93, 214501 (2016)ADSCrossRef Baust, A., Hoffmann, E., Haeberlein, M., Schwarz, M.J., Eder, P., Goetz, J., Wulschner, F., Xie, E., Zhong, L., Quijandŕa, F., Zueco, D., García Ripoll, J.J., García-Alvarez, L., Romero, G., Solano, E., Fedorov, K.G., Menzel, E.P., Deppe, F., Marx, A., Gross, R.: Ultrastrong coupling in two-resonator circuit QED. Phys. Rev. B 93, 214501 (2016)ADSCrossRef
24.
Zurück zum Zitat Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubitoscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)CrossRef Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubitoscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)CrossRef
25.
Zurück zum Zitat Mariantoni, M., Deppe, F., Marx, A., Gross, R., Wilhelm, F.K., Solano, E.: Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)ADSCrossRef Mariantoni, M., Deppe, F., Marx, A., Gross, R., Wilhelm, F.K., Solano, E.: Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)ADSCrossRef
26.
Zurück zum Zitat Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)ADSCrossRef Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)ADSCrossRef
27.
Zurück zum Zitat Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010)ADSCrossRef Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010)ADSCrossRef
28.
Zurück zum Zitat Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)ADSCrossRef Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)ADSCrossRef
29.
Zurück zum Zitat Strauch, F.W.: Quantum logic gates for superconducting resonator qudits. Phys. Rev. A 84, 052313 (2011)ADSCrossRef Strauch, F.W.: Quantum logic gates for superconducting resonator qudits. Phys. Rev. A 84, 052313 (2011)ADSCrossRef
30.
Zurück zum Zitat Strauch, F.W., Onyango, D., Jacobs, K., Simmonds, R.W.: Entangled-state synthesis for superconducting resonators. Phys. Rev. A 85, 022335 (2012)ADSCrossRef Strauch, F.W., Onyango, D., Jacobs, K., Simmonds, R.W.: Entangled-state synthesis for superconducting resonators. Phys. Rev. A 85, 022335 (2012)ADSCrossRef
31.
Zurück zum Zitat Peng, Z.H., Liu, Y.X., Nakamura, Y., Tsai, J.S.: Fast generation of multiparticle entangled state for flux qubits in a circle array of transmission line resonators with tunable coupling. Phys. Rev. B 85, 024537 (2012)ADSCrossRef Peng, Z.H., Liu, Y.X., Nakamura, Y., Tsai, J.S.: Fast generation of multiparticle entangled state for flux qubits in a circle array of transmission line resonators with tunable coupling. Phys. Rev. B 85, 024537 (2012)ADSCrossRef
32.
Zurück zum Zitat Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014)ADSCrossRef Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014)ADSCrossRef
33.
Zurück zum Zitat Aron, C., Kulkarni, M., Türeci, H.E.: Steady-state entanglement of spatially separated qubits via quantum bath engineering. Phys. Rev. A 90, 062305 (2014)ADSCrossRef Aron, C., Kulkarni, M., Türeci, H.E.: Steady-state entanglement of spatially separated qubits via quantum bath engineering. Phys. Rev. A 90, 062305 (2014)ADSCrossRef
34.
Zurück zum Zitat Hua, M., Tao, M.J., Deng, F.G.: Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics. Phys. Rev. A 90, 012328 (2014)ADSCrossRef Hua, M., Tao, M.J., Deng, F.G.: Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics. Phys. Rev. A 90, 012328 (2014)ADSCrossRef
35.
Zurück zum Zitat Sharma, R., Strauch, F.W.: Quantum state synthesis of superconducting resonators. Phys. Rev. A 93, 012342 (2016)ADSCrossRef Sharma, R., Strauch, F.W.: Quantum state synthesis of superconducting resonators. Phys. Rev. A 93, 012342 (2016)ADSCrossRef
36.
Zurück zum Zitat Kyriienko, O., Søensen, A.S.: Continuous-wave single-photon transistor based on a superconducting circuit. Phys. Rev. Lett. 117, 140503 (2016)ADSCrossRef Kyriienko, O., Søensen, A.S.: Continuous-wave single-photon transistor based on a superconducting circuit. Phys. Rev. Lett. 117, 140503 (2016)ADSCrossRef
37.
Zurück zum Zitat Zhao, Y.J., Wang, C.Q., Zhu, X.B., Liu, Y.X.: Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit. Sci. Rep. 6, 23646 (2016)ADSCrossRef Zhao, Y.J., Wang, C.Q., Zhu, X.B., Liu, Y.X.: Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit. Sci. Rep. 6, 23646 (2016)ADSCrossRef
38.
Zurück zum Zitat Li, Z., Ma, S.L., Yang, Z.P., Fang, A.P., Li, P.B., Gao, S.Y., Li, F.L.: Generation and replication of continuous-variable quadripartite cluster and Greenberger–Horne–Zeilinger states in four chains of superconducting transmission line resonators. Phys. Rev. A 93, 042305 (2016)ADSCrossRef Li, Z., Ma, S.L., Yang, Z.P., Fang, A.P., Li, P.B., Gao, S.Y., Li, F.L.: Generation and replication of continuous-variable quadripartite cluster and Greenberger–Horne–Zeilinger states in four chains of superconducting transmission line resonators. Phys. Rev. A 93, 042305 (2016)ADSCrossRef
39.
Zurück zum Zitat Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016)ADSCrossRef Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016)ADSCrossRef
40.
Zurück zum Zitat Li, W.L., Li, C., Song, H.S.: Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems. Phys. A 463, 427–436 (2016)MathSciNetCrossRef Li, W.L., Li, C., Song, H.S.: Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems. Phys. A 463, 427–436 (2016)MathSciNetCrossRef
41.
Zurück zum Zitat Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)ADSCrossRef Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)ADSCrossRef
42.
Zurück zum Zitat Liu, T., Zhang, Y., Yu, C.S., Zhang, W.N.: Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators. Phys. Lett. A 381, 1727–1731 (2017)ADSCrossRef Liu, T., Zhang, Y., Yu, C.S., Zhang, W.N.: Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators. Phys. Lett. A 381, 1727–1731 (2017)ADSCrossRef
43.
Zurück zum Zitat Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R.C., Chen, Y., Lenander, M., Lucero, E., O’connell, A.D., Sank, D., Weides, M., Wenner, J., Yin, Y., Zhao, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 61–65 (2011)ADSCrossRef Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R.C., Chen, Y., Lenander, M., Lucero, E., O’connell, A.D., Sank, D., Weides, M., Wenner, J., Yin, Y., Zhao, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 61–65 (2011)ADSCrossRef
44.
Zurück zum Zitat Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)ADSCrossRef Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)ADSCrossRef
45.
Zurück zum Zitat Steffen, L., Salathe, Y., Oppliger, M., Kurpiers, P., Baur, M., Lang, C., Eichler, C., Puebla-Hellmann, G., Fedorov, A., Wallraff, A.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013)ADSCrossRef Steffen, L., Salathe, Y., Oppliger, M., Kurpiers, P., Baur, M., Lang, C., Eichler, C., Puebla-Hellmann, G., Fedorov, A., Wallraff, A.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013)ADSCrossRef
46.
Zurück zum Zitat Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrdinger cat living in two boxes. Science 352, 1087–1091 (2016)ADSMathSciNetCrossRefMATH Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrdinger cat living in two boxes. Science 352, 1087–1091 (2016)ADSMathSciNetCrossRefMATH
47.
Zurück zum Zitat Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)ADSCrossRef Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)ADSCrossRef
48.
Zurück zum Zitat Kakuyanagi, K., Matsuzaki, Y., Déprez, C., Toida, H., Semba, K., Yamaguchi, H., Munro, W.J., Saito, S.: Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator. Phys. Rev. Lett. 117, 210503 (2016)ADSCrossRef Kakuyanagi, K., Matsuzaki, Y., Déprez, C., Toida, H., Semba, K., Yamaguchi, H., Munro, W.J., Saito, S.: Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator. Phys. Rev. Lett. 117, 210503 (2016)ADSCrossRef
49.
Zurück zum Zitat Paik, H., Mezzacapo, A., Sandberg, M., McClure, D.T., Abdo, B., Córcoles, A.D., Dial, O., Bogorin, D.F., Plourde, B.L.T., Steffen, M., Cross, A.W., Gambetta, J.M., Chow, J.M.: Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-qed system. Phys. Rev. Lett. 117, 250502 (2016)ADSCrossRef Paik, H., Mezzacapo, A., Sandberg, M., McClure, D.T., Abdo, B., Córcoles, A.D., Dial, O., Bogorin, D.F., Plourde, B.L.T., Steffen, M., Cross, A.W., Gambetta, J.M., Chow, J.M.: Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-qed system. Phys. Rev. Lett. 117, 250502 (2016)ADSCrossRef
50.
Zurück zum Zitat Wang, X., Sørensen, A., Mølmeret, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)ADSCrossRef Wang, X., Sørensen, A., Mølmeret, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)ADSCrossRef
51.
Zurück zum Zitat Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)ADSCrossRef Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)ADSCrossRef
52.
Zurück zum Zitat Zou, X., Dong, Y., Guo, G.C.: Implementing a conditional \(z\) gate by a combination of resonant interaction and quantum interference. Phys. Rev. A 74, 032325 (2006)ADSCrossRef Zou, X., Dong, Y., Guo, G.C.: Implementing a conditional \(z\) gate by a combination of resonant interaction and quantum interference. Phys. Rev. A 74, 032325 (2006)ADSCrossRef
53.
Zurück zum Zitat Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an \(N\)-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)ADSCrossRef Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an \(N\)-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)ADSCrossRef
54.
Zurück zum Zitat Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRef Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRef
55.
Zurück zum Zitat Jones, C.: Composite Toffoli gate with two-round error detection. Phys. Rev. A 87, 052334 (2013)ADSCrossRef Jones, C.: Composite Toffoli gate with two-round error detection. Phys. Rev. A 87, 052334 (2013)ADSCrossRef
56.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef
57.
Zurück zum Zitat Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81, 062323 (2010)ADSCrossRef Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81, 062323 (2010)ADSCrossRef
58.
Zurück zum Zitat Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312–3315 (2014)ADSCrossRef Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312–3315 (2014)ADSCrossRef
59.
Zurück zum Zitat Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)ADSCrossRef Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)ADSCrossRef
60.
Zurück zum Zitat Liu, T., Cao, X.Z., Su, Q.P., Xiong, S.J., Yang, C.-P.: Multi-target-qubit unconventional geometric phase gate in a multi-cavity system. Sci. Rep. 6, 21562 (2016)ADSCrossRef Liu, T., Cao, X.Z., Su, Q.P., Xiong, S.J., Yang, C.-P.: Multi-target-qubit unconventional geometric phase gate in a multi-cavity system. Sci. Rep. 6, 21562 (2016)ADSCrossRef
61.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef
62.
Zurück zum Zitat Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)CrossRef Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)CrossRef
63.
Zurück zum Zitat Shor, P.W.: In: Goldwasser S. (ed.) Proceedings of the 35th annual symposium on foundations of computer science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994) Shor, P.W.: In: Goldwasser S. (ed.) Proceedings of the 35th annual symposium on foundations of computer science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)
64.
Zurück zum Zitat Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRef Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRef
65.
Zurück zum Zitat Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
66.
Zurück zum Zitat Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef
68.
Zurück zum Zitat Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)CrossRefMATH Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)CrossRefMATH
69.
Zurück zum Zitat Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4, p. 96. Springer, Berlin (2001) Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4, p. 96. Springer, Berlin (2001)
70.
Zurück zum Zitat Šašura, M., Bužek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)CrossRef Šašura, M., Bužek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)CrossRef
71.
Zurück zum Zitat Braunstein, S.L., Bužek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)ADSCrossRef Braunstein, S.L., Bužek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)ADSCrossRef
72.
Zurück zum Zitat Liu, Y.X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)ADSCrossRef Liu, Y.X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)ADSCrossRef
73.
Zurück zum Zitat Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)CrossRef Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)CrossRef
74.
Zurück zum Zitat Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009)ADSCrossRef Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009)ADSCrossRef
75.
Zurück zum Zitat Strand, J.D., Ware, M., Beaudoin, F., Ohki, T.A., Johnson, B.R., Blais, A., Plourde, B.L.T.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505 (2013)ADSCrossRef Strand, J.D., Ware, M., Beaudoin, F., Ohki, T.A., Johnson, B.R., Blais, A., Plourde, B.L.T.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505 (2013)ADSCrossRef
76.
Zurück zum Zitat Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)ADSCrossRef Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)ADSCrossRef
77.
Zurück zum Zitat James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625–632 (2007)ADSCrossRef James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625–632 (2007)ADSCrossRef
78.
Zurück zum Zitat Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)ADSCrossRef Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)ADSCrossRef
79.
Zurück zum Zitat Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)ADSCrossRef Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)ADSCrossRef
80.
Zurück zum Zitat Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)ADSCrossRef Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)ADSCrossRef
81.
Zurück zum Zitat Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)ADSCrossRef Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)ADSCrossRef
82.
Zurück zum Zitat Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)ADSCrossRef Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)ADSCrossRef
Metadaten
Titel
One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system
verfasst von
Tong Liu
Bao-Qing Guo
Yang Zhang
Chang-Shui Yu
Wei-Ning Zhang
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2011-x

Weitere Artikel der Ausgabe 9/2018

Quantum Information Processing 9/2018 Zur Ausgabe

Neuer Inhalt