Skip to main content

2011 | OriginalPaper | Buchkapitel

Optimal Lower Bounds for Universal and Differentially Private Steiner Trees and TSPs

verfasst von : Anand Bhalgat, Deeparnab Chakrabarty, Sanjeev Khanna

Erschienen in: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Given a metric space on

n

points, an

α

-approximate

universal

algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset

X

of vertices containing the root, the expected cost of the induced subtree is within an

α

factor of the optimal Steiner tree cost for

X

. An

α

-approximate

differentially private

algorithm for the Steiner tree problem takes as input a subset

X

of vertices, and outputs a tree distribution that induces a solution within an

α

factor of the optimal as before, and satisfies the additional property that for any set

X

′ that differs in a single vertex from

X

, the tree distributions for

X

and

X

′ are “close” to each other. Universal and differentially private algorithms for TSP are defined similarly. An

α

-approximate universal algorithm for the Steiner tree problem or TSP is also an

α

-approximate differentially private algorithm. It is known that both problems admit

O

(log

n

)-approximate universal algorithms, and hence

O

(log

n

) approximate differentially private algorithms as well.

We prove an Ω(log

n

) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root. We then show that whenever the universal problem has a lower bound that satisfies an additional property, it implies a similar lower bound for the differentially private version. Using this converse relation between universal and private algorithms, we establish an Ω(log

n

) lower bound for the differentially private Steiner tree and the differentially private TSP. This answers a question of Talwar [19]. Our results highlight a natural connection between universal and private approximation algorithms that is likely to have other applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Optimal Lower Bounds for Universal and Differentially Private Steiner Trees and TSPs
verfasst von
Anand Bhalgat
Deeparnab Chakrabarty
Sanjeev Khanna
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-22935-0_7

Premium Partner