Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2017

01.06.2017 | Research Paper

Optimisation of the self-assembly process: production of stable, alginate-based polyelectrolyte nanocomplexes with protamine

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this work was to investigate the possibility of covalent cross-linker-free, polyelectrolyte complex formation at the nanoscale between alginic acid (as sodium alginate, ALG) and protamine (PROT). Optimisation of the self-assembly conditions was performed by varying the type of polymer used, pH of component solutions, mass mixing ratio of the components and the speed and order of component addition on the properties of complexes. Homogenous particles with nanometric sizes resulted when an aqueous dispersion of ALG was rapidly mixed with a solution of PROT. The polyelectrolyte complex between ALG and PROT was confirmed by infrared spectroscopy. To facilitate incorporation of drugs soluble at low pH, pH of ALG dispersion was decreased to 2; however, no nanoparticles (NPs) were formed upon complexation with PROT. Adjusting pH of PROT solution to 3 resulted in the formation of cationic or anionic NPs with a size range 70–300 nm. Colloidal stability of selected alginic acid low/PROT formulations was determined upon storage at room temperature and in liquid media at various pH. Physical stability of NPs correlated with the initial surface charge of particles and was time- and pH-dependent. Generally, better stability was observed for anionic NPs stored as native dispersions and in liquids covering a range of pH.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andriamanantoanina H, Rinaudo M (2010) Relationship between the molecular structure of alginates and their gelation in acidic conditions. Polym Int 59:1531–1541CrossRef Andriamanantoanina H, Rinaudo M (2010) Relationship between the molecular structure of alginates and their gelation in acidic conditions. Polym Int 59:1531–1541CrossRef
Zurück zum Zitat Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosc 6:623–633CrossRef Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosc 6:623–633CrossRef
Zurück zum Zitat Avadi MR, Sadeghi AMM, Dounighi NM, Dinarvand R, Atyabi F, Rafiee-Tehrani M (2011) Ex vivo evaluation of insulin nanoparticles using chitosan and arabic gum. ISRN Pharmaceutics. article ID 860109. doi:10.5402/2011/860109 Avadi MR, Sadeghi AMM, Dounighi NM, Dinarvand R, Atyabi F, Rafiee-Tehrani M (2011) Ex vivo evaluation of insulin nanoparticles using chitosan and arabic gum. ISRN Pharmaceutics. article ID 860109. doi:10.​5402/​2011/​860109
Zurück zum Zitat Awotwe-Otoo D, Agarabi C, Keire D, Lee S, Raw A, Yu L, Habib MJ, Khan MA, Shah RB (2012) Physicochemical characterization of complex drug substances: evaluation of structural similarities and differences of protamine sulfate from various sources. AAPS J 14:619–626CrossRef Awotwe-Otoo D, Agarabi C, Keire D, Lee S, Raw A, Yu L, Habib MJ, Khan MA, Shah RB (2012) Physicochemical characterization of complex drug substances: evaluation of structural similarities and differences of protamine sulfate from various sources. AAPS J 14:619–626CrossRef
Zurück zum Zitat Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRef Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRef
Zurück zum Zitat Bertoluzza A, Bonora S, Fini G, Morelli MA, Simoni R (1983) Phospholipid–protein molecular interactions in relation to immuno-logical processes. J Raman Spectrosc 14:395–400CrossRef Bertoluzza A, Bonora S, Fini G, Morelli MA, Simoni R (1983) Phospholipid–protein molecular interactions in relation to immuno-logical processes. J Raman Spectrosc 14:395–400CrossRef
Zurück zum Zitat Birch NP, Schiffman JD (2014) Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir 30:3441–3447CrossRef Birch NP, Schiffman JD (2014) Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir 30:3441–3447CrossRef
Zurück zum Zitat Boddohi S, Killingsworth CE, Kipper MJ (2008) Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin. Biomacromolecules 9:2021–2028CrossRef Boddohi S, Killingsworth CE, Kipper MJ (2008) Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin. Biomacromolecules 9:2021–2028CrossRef
Zurück zum Zitat Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2011) Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr Polym 85:522–528CrossRef Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2011) Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr Polym 85:522–528CrossRef
Zurück zum Zitat Chen JH, Heitmann JA, Hubbe MA (2003) Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and polybase. Colloids Surf A Physicochem Eng Asp 223:215–230CrossRef Chen JH, Heitmann JA, Hubbe MA (2003) Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and polybase. Colloids Surf A Physicochem Eng Asp 223:215–230CrossRef
Zurück zum Zitat Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526CrossRef Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526CrossRef
Zurück zum Zitat Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica F 19:2023–2028CrossRef Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica F 19:2023–2028CrossRef
Zurück zum Zitat Delie F, Blanco-Prieto M (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10:65–80CrossRef Delie F, Blanco-Prieto M (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10:65–80CrossRef
Zurück zum Zitat Dragan ES, Mihai M, Schwarz S (2006) Polyelectrolyte complex dispersions with a high colloidal stability controlled by the polyion structure and titrant addition rate. Colloids Surf A Physicochem Eng Asp 290:213–221CrossRef Dragan ES, Mihai M, Schwarz S (2006) Polyelectrolyte complex dispersions with a high colloidal stability controlled by the polyion structure and titrant addition rate. Colloids Surf A Physicochem Eng Asp 290:213–221CrossRef
Zurück zum Zitat Dul M, Paluch KJ, Kelly H, Healy AM, Sasse A, Tajber L (2015) Self-assembled carrageenan/protamine polyelectrolyte nanoplexes-investigation of critical parameters governing their formation and characteristics. Carbohydr Polym 123:339–349CrossRef Dul M, Paluch KJ, Kelly H, Healy AM, Sasse A, Tajber L (2015) Self-assembled carrageenan/protamine polyelectrolyte nanoplexes-investigation of critical parameters governing their formation and characteristics. Carbohydr Polym 123:339–349CrossRef
Zurück zum Zitat Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561CrossRef Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561CrossRef
Zurück zum Zitat George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14CrossRef George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14CrossRef
Zurück zum Zitat Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activities of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2:497–502CrossRef Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activities of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2:497–502CrossRef
Zurück zum Zitat Holme HK, Lindmo K, Kristiansen A, Smidsrød O (2003) Thermal depolymerisation of alginate in the solid state. Carbohydr Polym 54:431–438CrossRef Holme HK, Lindmo K, Kristiansen A, Smidsrød O (2003) Thermal depolymerisation of alginate in the solid state. Carbohydr Polym 54:431–438CrossRef
Zurück zum Zitat Holme HK, Davidsen L, Kristiansen A, Smidsrød O (2008) Kinetics and mechanisms of depolymerisation of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664CrossRef Holme HK, Davidsen L, Kristiansen A, Smidsrød O (2008) Kinetics and mechanisms of depolymerisation of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664CrossRef
Zurück zum Zitat Hu Y, Yang T, Hu X (2012) Novel polysaccharide-based nanoparticle carriers prepared by polyelectrolyte complexation for protein delivery. Polym Bull 68:1183–1199CrossRef Hu Y, Yang T, Hu X (2012) Novel polysaccharide-based nanoparticle carriers prepared by polyelectrolyte complexation for protein delivery. Polym Bull 68:1183–1199CrossRef
Zurück zum Zitat Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487CrossRef Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487CrossRef
Zurück zum Zitat Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316CrossRef Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316CrossRef
Zurück zum Zitat Lee KQ, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef Lee KQ, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef
Zurück zum Zitat Le-Tien C, Milette M, Mateescu M-A, Lacroix M (2004) Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol Appl Biochem 39:347–354CrossRef Le-Tien C, Milette M, Mateescu M-A, Lacroix M (2004) Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol Appl Biochem 39:347–354CrossRef
Zurück zum Zitat Li P, Dai Y-N, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228 Li P, Dai Y-N, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228
Zurück zum Zitat Li C, Hein S, Wang K (2013) Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. ISRN Biomaterials. article ID 629807. doi:10.5402/2013/629807 Li C, Hein S, Wang K (2013) Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. ISRN Biomaterials. article ID 629807. doi:10.​5402/​2013/​629807
Zurück zum Zitat Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173CrossRef Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173CrossRef
Zurück zum Zitat Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, van Horn B, Guan Z, Chen G, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743CrossRef Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, van Horn B, Guan Z, Chen G, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743CrossRef
Zurück zum Zitat Mustafaev MI (1996) Polyelectrolyes in immunology. Turk J Chem 20:126–138 Mustafaev MI (1996) Polyelectrolyes in immunology. Turk J Chem 20:126–138
Zurück zum Zitat Ngwuluka NC, Ochekpe NA, Aruoma OI (2014) Naturapolyceutics: the science of utilizing natural polymers for drug delivery. Polymers 6:1312–1332CrossRef Ngwuluka NC, Ochekpe NA, Aruoma OI (2014) Naturapolyceutics: the science of utilizing natural polymers for drug delivery. Polymers 6:1312–1332CrossRef
Zurück zum Zitat Polexe RC, Delair T (2013) Elaboration of stable and antibody functionalized positively charged colloids by polyelectrolyte complexation between chitosan and hyaluronic acid. Molecules 18:8563–8578CrossRef Polexe RC, Delair T (2013) Elaboration of stable and antibody functionalized positively charged colloids by polyelectrolyte complexation between chitosan and hyaluronic acid. Molecules 18:8563–8578CrossRef
Zurück zum Zitat Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16:1240–1245CrossRef Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16:1240–1245CrossRef
Zurück zum Zitat Saether HV, Holme HK, Maurstad G, Smidsrod O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821CrossRef Saether HV, Holme HK, Maurstad G, Smidsrod O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821CrossRef
Zurück zum Zitat Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2007) Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimisation and physicochemical characterisation. Eur J Pharm Biopharm 65:215–232CrossRef Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2007) Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimisation and physicochemical characterisation. Eur J Pharm Biopharm 65:215–232CrossRef
Zurück zum Zitat Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterisation of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1–7CrossRef Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterisation of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1–7CrossRef
Zurück zum Zitat Sarmento B, Bibeiro A, Veiga F, Ferreira D, Neufeld R (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8:3054–3060CrossRef Sarmento B, Bibeiro A, Veiga F, Ferreira D, Neufeld R (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8:3054–3060CrossRef
Zurück zum Zitat Silva CM, Ribeiro AJ, Ferreira D, Veiga F (2006) Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur J Pharm Sci 29:148–159CrossRef Silva CM, Ribeiro AJ, Ferreira D, Veiga F (2006) Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur J Pharm Sci 29:148–159CrossRef
Zurück zum Zitat Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38CrossRef Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38CrossRef
Zurück zum Zitat Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as delivery devices. J Control Release 70:1–20CrossRef Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as delivery devices. J Control Release 70:1–20CrossRef
Zurück zum Zitat Srivastava A, Yadav T, Sharma S, Nayak A, Kumari A, Mishra N (2016) Polymers in drug delivery. J Biosci Med 4:69–84 Srivastava A, Yadav T, Sharma S, Nayak A, Kumari A, Mishra N (2016) Polymers in drug delivery. J Biosci Med 4:69–84
Zurück zum Zitat Temsamani J, Vidal P (2004) The use of cell-penetrating peptides for drug delivery. Drug Discov Ther 9:1012–1019CrossRef Temsamani J, Vidal P (2004) The use of cell-penetrating peptides for drug delivery. Drug Discov Ther 9:1012–1019CrossRef
Zurück zum Zitat Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630CrossRef Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630CrossRef
Zurück zum Zitat Umerska A, Paluch KJ, Inkielewicz-Stepniak I, Santoz-Martinez MJ, Corrigan OI, Medina C, Tajber L (2012) Exploring the assembly process and properties of novel cross-linker free hyaluronate-based polyelectrolyte complex nanocarriers. Int J Pharm 436:75–87CrossRef Umerska A, Paluch KJ, Inkielewicz-Stepniak I, Santoz-Martinez MJ, Corrigan OI, Medina C, Tajber L (2012) Exploring the assembly process and properties of novel cross-linker free hyaluronate-based polyelectrolyte complex nanocarriers. Int J Pharm 436:75–87CrossRef
Zurück zum Zitat Umerska A, Paluch KJ, Santos-Martinez MJ, Corrigan OI, Medina C, Tajber L (2014) Self-assembled hyaluronate/protamine polyelectrolyte nanoplexes: synthesis, stability, biocompatibility and potential use as peptide carriers. J Biomed Nanotechnol 10:3658–3673CrossRef Umerska A, Paluch KJ, Santos-Martinez MJ, Corrigan OI, Medina C, Tajber L (2014) Self-assembled hyaluronate/protamine polyelectrolyte nanoplexes: synthesis, stability, biocompatibility and potential use as peptide carriers. J Biomed Nanotechnol 10:3658–3673CrossRef
Zurück zum Zitat Umerska A, Paluch KJ, Santos-Martinez MJ, Corrigan OI, Medina C, Tajber L (2015) Chondroitin-based nanoplexes as peptide delivery systems—investigations into the self-assembly process, solid-state and extended release characteristics. Eur J Pharm Biopharm 93:242–253CrossRef Umerska A, Paluch KJ, Santos-Martinez MJ, Corrigan OI, Medina C, Tajber L (2015) Chondroitin-based nanoplexes as peptide delivery systems—investigations into the self-assembly process, solid-state and extended release characteristics. Eur J Pharm Biopharm 93:242–253CrossRef
Zurück zum Zitat Wee S, Gombotz WR (1998) Protein release from alginate matrices. Adv Drug Del Rev 31:267–285CrossRef Wee S, Gombotz WR (1998) Protein release from alginate matrices. Adv Drug Del Rev 31:267–285CrossRef
Zurück zum Zitat Wernig K, Griesbacher M, Andreae F, Hajos F, Wagner J, Mosgoeller W, Zimmer A (2008) Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J Control Release 130(2):192–198CrossRef Wernig K, Griesbacher M, Andreae F, Hajos F, Wagner J, Mosgoeller W, Zimmer A (2008) Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J Control Release 130(2):192–198CrossRef
Zurück zum Zitat Yu X, Hou J, Shi Y, Su C, Zhao L (2016) Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery. Int J Nanomedicine 11:6035–6046CrossRef Yu X, Hou J, Shi Y, Su C, Zhao L (2016) Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery. Int J Nanomedicine 11:6035–6046CrossRef
Metadaten
Titel
Optimisation of the self-assembly process: production of stable, alginate-based polyelectrolyte nanocomplexes with protamine
Publikationsdatum
01.06.2017
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3901-z

Weitere Artikel der Ausgabe 6/2017

Journal of Nanoparticle Research 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.