Skip to main content
Erschienen in: Journal of Materials Science 28/2021

12.07.2021 | Computation & theory

Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?

verfasst von: Tomofumi Kato, Yasuhiro Yamada, Yasushi Nishikawa, Toshiya Otomo, Hayato Sato, Satoshi Sato

Erschienen in: Journal of Materials Science | Ausgabe 28/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

X-ray photoelectron spectroscopy (XPS) is among the most powerful techniques to analyse structures of nitrogen-doped carbon materials. However, reported assignments of (1) graphitic nitrogen (N)/substitutional N, quaternary N (Q–N), or tertiary amine (T–N) and (2) pyrrolic N/secondary amine or T–N are questionable. Most reports assign peaks at ca. 401 eV as Q–N or graphitic N, whereas raw materials in most of those works contain neither counter anion nor halogen. Besides, the peak at ca. 400 eV has been assigned as pyrrolic N, but the presence of N–H is generally not confirmed. In this work, it was clarified that one of the reasons for the prevailing ambiguous assignments is the presence of N in heptagonal and pentagonal rings. The peaks at 400.1–401.2 eV were determined to be T–N, but not Q–N by analyzing graphitized polyimide (with the oxygen content of 0.01 at% or lower and the hydrogen content of 0 at%) using Raman spectroscopy, XPS, X-ray diffraction, total neutron scattering, elemental analysis, and molecular dynamics simulation. Besides, it was revealed that the peak at 400.1 eV originated from T–N on 5-membered rings or 7- and 5-membered rings, but not pyrrolic N because graphite including no hydrogen was used for analysis.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bianco A, Chen Y, Frackowiak E, Holzinger M, Koratkar N, Meunier V et al (2020) Carbon science perspective in 2020: current research and future challenges. Carbon 161:373–391CrossRef Bianco A, Chen Y, Frackowiak E, Holzinger M, Koratkar N, Meunier V et al (2020) Carbon science perspective in 2020: current research and future challenges. Carbon 161:373–391CrossRef
2.
Zurück zum Zitat Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365CrossRef Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365CrossRef
3.
Zurück zum Zitat Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef
4.
Zurück zum Zitat Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629CrossRef Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629CrossRef
5.
Zurück zum Zitat Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef
6.
Zurück zum Zitat Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T et al (2017) Carbon materials with controlled edge structures. Carbon 122:694–701CrossRef Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T et al (2017) Carbon materials with controlled edge structures. Carbon 122:694–701CrossRef
7.
Zurück zum Zitat Artyushkova K (2020) Misconceptions in interpretation of nitrogen chemistry from X-ray photoelectron spectra. J Vac Sci Technol A 38:031002CrossRef Artyushkova K (2020) Misconceptions in interpretation of nitrogen chemistry from X-ray photoelectron spectra. J Vac Sci Technol A 38:031002CrossRef
8.
Zurück zum Zitat Figueras M, Villar-Garcia IJ, Viñes F, Sousa C, Peña O’Shea VA, Illas F et al (2019) Correcting flaws in the assignment of nitrogen chemical environments in N-doped graphene. J Phys Chem C 123:11319–11327CrossRef Figueras M, Villar-Garcia IJ, Viñes F, Sousa C, Peña O’Shea VA, Illas F et al (2019) Correcting flaws in the assignment of nitrogen chemical environments in N-doped graphene. J Phys Chem C 123:11319–11327CrossRef
9.
Zurück zum Zitat Costa R, Morales-García A, Figueras M, Illas F (2021) Assigning XPS features in B, N-doped graphene: input from ab initio quantum chemical calculations. Phys Chem Chem Phys 23:1558–1665CrossRef Costa R, Morales-García A, Figueras M, Illas F (2021) Assigning XPS features in B, N-doped graphene: input from ab initio quantum chemical calculations. Phys Chem Chem Phys 23:1558–1665CrossRef
10.
Zurück zum Zitat Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74CrossRef Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74CrossRef
11.
Zurück zum Zitat Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189CrossRef Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189CrossRef
12.
Zurück zum Zitat Yamada Y, Sato S (2020) Analysis of defective structures of carbon materials. Shokubai 62:47–53 Yamada Y, Sato S (2020) Analysis of defective structures of carbon materials. Shokubai 62:47–53
13.
Zurück zum Zitat Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80CrossRef Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80CrossRef
14.
Zurück zum Zitat Jansen RJJ, Bekkum HV (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027CrossRef Jansen RJJ, Bekkum HV (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027CrossRef
15.
Zurück zum Zitat Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef
16.
Zurück zum Zitat Konno H, Nakahashi T, Inagaki M (1997) State analysis of nitrogen in carbon film derived from polyimide kapton. Carbon 35:669–674CrossRef Konno H, Nakahashi T, Inagaki M (1997) State analysis of nitrogen in carbon film derived from polyimide kapton. Carbon 35:669–674CrossRef
17.
Zurück zum Zitat Yoon SJ, Kim S, Kim DK, Yu DM, Hempelmann R, Hong YT et al (2020) Nitrogen-doping through two-step pyrolysis of polyacrylonitrile on graphite felts for vanadium redox flow batteries. Energy Fuels 34:5052–5059CrossRef Yoon SJ, Kim S, Kim DK, Yu DM, Hempelmann R, Hong YT et al (2020) Nitrogen-doping through two-step pyrolysis of polyacrylonitrile on graphite felts for vanadium redox flow batteries. Energy Fuels 34:5052–5059CrossRef
18.
Zurück zum Zitat Furuyado M, Zaini MAA, Aikawa M, Amano Y, Machida M (2010) Adsorption of Cd(II) on activated carbon fiber prepared from polyacrylonitrile (PAN). J Environ Chem 20:379–384CrossRef Furuyado M, Zaini MAA, Aikawa M, Amano Y, Machida M (2010) Adsorption of Cd(II) on activated carbon fiber prepared from polyacrylonitrile (PAN). J Environ Chem 20:379–384CrossRef
19.
Zurück zum Zitat Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R et al (2013) Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction. Nat Commun 4:1–8 Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R et al (2013) Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction. Nat Commun 4:1–8
20.
Zurück zum Zitat Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Growth and electronic structure of nitrogen-doped graphene on Ni(111). Phys Rev B 86:075401CrossRef Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Growth and electronic structure of nitrogen-doped graphene on Ni(111). Phys Rev B 86:075401CrossRef
21.
Zurück zum Zitat Bertoti I, Mohai M, Laszlo K (2015) Surface modification of graphene and graphite by nitrogen plasma: determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon 84:185–196CrossRef Bertoti I, Mohai M, Laszlo K (2015) Surface modification of graphene and graphite by nitrogen plasma: determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon 84:185–196CrossRef
22.
Zurück zum Zitat Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94CrossRef Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94CrossRef
23.
Zurück zum Zitat Yamada Y, Miyauchi M, Kim J, Takai KH, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378CrossRef Yamada Y, Miyauchi M, Kim J, Takai KH, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378CrossRef
25.
Zurück zum Zitat Yamada Y, Tanaka H, Kubo S, Sato S, Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy (submitted for publication) Yamada Y, Tanaka H, Kubo S, Sato S, Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy (submitted for publication)
27.
Zurück zum Zitat Bellafont NP, Mañeru DR, Illas F (2014) Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon 76:155–164CrossRef Bellafont NP, Mañeru DR, Illas F (2014) Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon 76:155–164CrossRef
30.
Zurück zum Zitat Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S et al (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326CrossRef Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S et al (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326CrossRef
31.
Zurück zum Zitat Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084CrossRef Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084CrossRef
32.
Zurück zum Zitat Fujimoto A, Yamada Y, Koinuma M, Sato S (2016) Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114CrossRef Fujimoto A, Yamada Y, Koinuma M, Sato S (2016) Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114CrossRef
33.
Zurück zum Zitat Kim J, Han JW, Yamada Y (2021) Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy. ACS Omega 6:2389–2395CrossRef Kim J, Han JW, Yamada Y (2021) Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy. ACS Omega 6:2389–2395CrossRef
35.
Zurück zum Zitat Diana N, Yamada Y, Gohda S, Ono H, Kubo S, Sato S (2021) Carbon materials with high pentagon density. J Mater Sci 56:2912–2943CrossRef Diana N, Yamada Y, Gohda S, Ono H, Kubo S, Sato S (2021) Carbon materials with high pentagon density. J Mater Sci 56:2912–2943CrossRef
36.
Zurück zum Zitat Kim J, Lee N, Nodo M, Min YH, Noh SH, Kim N et al (2018) Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega 3:17789–17796CrossRef Kim J, Lee N, Nodo M, Min YH, Noh SH, Kim N et al (2018) Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega 3:17789–17796CrossRef
37.
Zurück zum Zitat Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739CrossRef Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739CrossRef
38.
Zurück zum Zitat Kowalik M, Ashraf C, Damirchi B, Akbarian D, Rajabpour S, Duin ACTV (2019) Atomistic scale analysis of the carbonization process for C/H/O/N based polymers with the ReaxFF reactive force field. J Phys Chem B 123:5357–5367CrossRef Kowalik M, Ashraf C, Damirchi B, Akbarian D, Rajabpour S, Duin ACTV (2019) Atomistic scale analysis of the carbonization process for C/H/O/N based polymers with the ReaxFF reactive force field. J Phys Chem B 123:5357–5367CrossRef
39.
Zurück zum Zitat Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford, CT Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford, CT
41.
Zurück zum Zitat Huang PY, Vargas CSR, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef Huang PY, Vargas CSR, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef
42.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef
43.
Zurück zum Zitat Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930CrossRef Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930CrossRef
44.
Zurück zum Zitat Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208CrossRef Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208CrossRef
45.
Zurück zum Zitat Herraiz M, Dubois M, Batisse N, Hajjar-Garreau S, Simon L (2018) Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite. Dalton Trans 47:4596–4606CrossRef Herraiz M, Dubois M, Batisse N, Hajjar-Garreau S, Simon L (2018) Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite. Dalton Trans 47:4596–4606CrossRef
46.
Zurück zum Zitat Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M, Sato S, Hata K, Peter E, Ciston J, Song C, Kim K, Regan W, Gannett W, Zettl Z (2014) Subnanometer vacancy defects introduced on graphene by oxygen gas. J Am Chem Soc 136:2232–2235CrossRef Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M, Sato S, Hata K, Peter E, Ciston J, Song C, Kim K, Regan W, Gannett W, Zettl Z (2014) Subnanometer vacancy defects introduced on graphene by oxygen gas. J Am Chem Soc 136:2232–2235CrossRef
47.
Zurück zum Zitat Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731CrossRef Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731CrossRef
Metadaten
Titel
Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?
verfasst von
Tomofumi Kato
Yasuhiro Yamada
Yasushi Nishikawa
Toshiya Otomo
Hayato Sato
Satoshi Sato
Publikationsdatum
12.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 28/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06283-5

Weitere Artikel der Ausgabe 28/2021

Journal of Materials Science 28/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.