Skip to main content
Erschienen in: Journal of Materials Science 21/2018

25.06.2018 | Review

Oxidation of ZrB2 and its composites: a review

verfasst von: Ryo Inoue, Yutaro Arai, Yuki Kubota, Yasuo Kogo, Ken Goto

Erschienen in: Journal of Materials Science | Ausgabe 21/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The oxidation behavior and oxidation mechanisms of monolithic ZrB2 and particulate-ZrB2 matrix composites were reviewed. Dispersion of SiC particles into ZrB2 was found to be an effective way to prevent extensive oxidation. However, the formation of a SiC-depleted layer can become a critical problem because it can lead to spallation and delamination of the protective surface layer. The addition of ZrC in conjunction with rapid heating to temperatures higher than 2000 °C effectively reduced the porosity of the SiC-depleted layer. The formation of a dense surface layer was attributed to large volumetric expansion during the conversion from ZrC to ZrO2. The effect of the ZrC addition depended on the temperature, heating rate, and composition. This review showed that material design for specific applications is required for high-temperature applications to maximize the oxidation resistance of ZSZ composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Fahrenholtz WG, Hilmas GE (2017) Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater 129:94–99CrossRef Fahrenholtz WG, Hilmas GE (2017) Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater 129:94–99CrossRef
3.
Zurück zum Zitat Neuman EW, Hilmas GE, Fahrenholtz WG (2016) Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics. Mater Sci Eng, A 670:196–204CrossRef Neuman EW, Hilmas GE, Fahrenholtz WG (2016) Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics. Mater Sci Eng, A 670:196–204CrossRef
4.
Zurück zum Zitat Neuman EW, Hilmas GE, Fahrenholtz WG (2015) Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J Eur Ceram Soc 35:463–476CrossRef Neuman EW, Hilmas GE, Fahrenholtz WG (2015) Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J Eur Ceram Soc 35:463–476CrossRef
5.
Zurück zum Zitat Neuman EW, Hilmas GE, Fahrenholtz WG (2013) Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J Eur Ceram Soc 33:2889–2899CrossRef Neuman EW, Hilmas GE, Fahrenholtz WG (2013) Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J Eur Ceram Soc 33:2889–2899CrossRef
6.
Zurück zum Zitat Neuman EW, Hilmas GE, Fahrenholtz WG (2012) Strength of zirconium diboride to 2300 °C. J Am Ceram Soc 96:47–50CrossRef Neuman EW, Hilmas GE, Fahrenholtz WG (2012) Strength of zirconium diboride to 2300 °C. J Am Ceram Soc 96:47–50CrossRef
7.
Zurück zum Zitat Watts J, Hilmas G, Fahrenholtz WG (2011) Mechanical characterization of ZrB2–SiC composites with varying SiC particle sizes. J Am Ceram Soc 94:4410–4418CrossRef Watts J, Hilmas G, Fahrenholtz WG (2011) Mechanical characterization of ZrB2–SiC composites with varying SiC particle sizes. J Am Ceram Soc 94:4410–4418CrossRef
8.
Zurück zum Zitat Watts J, Hilmas G, Fahrenholtz WG et al (2011) Measurement of thermal residual stresses in ZrB2–SiC composites. J Eur Ceram Soc 31:1811–1820CrossRef Watts J, Hilmas G, Fahrenholtz WG et al (2011) Measurement of thermal residual stresses in ZrB2–SiC composites. J Eur Ceram Soc 31:1811–1820CrossRef
9.
Zurück zum Zitat Zhang SC, Hilmas GE, Fahrenholtz WG (2011) Mechanical properties of sintered ZrB2–SiC ceramics. J Eur Ceram Soc 31:893–901CrossRef Zhang SC, Hilmas GE, Fahrenholtz WG (2011) Mechanical properties of sintered ZrB2–SiC ceramics. J Eur Ceram Soc 31:893–901CrossRef
10.
Zurück zum Zitat Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91:3530–3535CrossRef Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91:3530–3535CrossRef
11.
Zurück zum Zitat Zhang SC, Hilmas GE, Fahrenholtz WG (2007) Pressureless sintering of ZrB2–SiC ceramics. J Am Ceram Soc 91:26–32CrossRef Zhang SC, Hilmas GE, Fahrenholtz WG (2007) Pressureless sintering of ZrB2–SiC ceramics. J Am Ceram Soc 91:26–32CrossRef
12.
Zurück zum Zitat Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC (2007) Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc 90:3660–3663CrossRef Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC (2007) Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc 90:3660–3663CrossRef
14.
Zurück zum Zitat Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region. J Am Ceram Soc 90:143–148CrossRef Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region. J Am Ceram Soc 90:143–148CrossRef
15.
Zurück zum Zitat Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501CrossRef Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501CrossRef
16.
Zurück zum Zitat Rezaie A, Fahrenholtz WG, Hilmas GE (2006) Oxidation of zirconium diboride–silicon carbide at 1500 °C at a low partial pressure of oxygen. J Am Ceram Soc 89:3240–3245CrossRef Rezaie A, Fahrenholtz WG, Hilmas GE (2006) Oxidation of zirconium diboride–silicon carbide at 1500 °C at a low partial pressure of oxygen. J Am Ceram Soc 89:3240–3245CrossRef
17.
Zurück zum Zitat Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 87:1170–1172CrossRef Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 87:1170–1172CrossRef
18.
Zurück zum Zitat Zhang G-J, Ni D-W, Zou J et al (2017) Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J Eur Ceram Soc 38:371–389CrossRef Zhang G-J, Ni D-W, Zou J et al (2017) Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J Eur Ceram Soc 38:371–389CrossRef
19.
Zurück zum Zitat Tallon C, Chavara D, Gillen A et al (2013) Colloidal processing of zirconium diboride ultra-high temperature ceramics. J Am Ceram Soc 96:2374–2381CrossRef Tallon C, Chavara D, Gillen A et al (2013) Colloidal processing of zirconium diboride ultra-high temperature ceramics. J Am Ceram Soc 96:2374–2381CrossRef
20.
Zurück zum Zitat Bird MW, Aune RP, Thomas AF et al (2012) Temperature-dependent mechanical and long crack behavior of zirconium diboride–silicon carbide composite. J Eur Ceram Soc 32:3453–3462CrossRef Bird MW, Aune RP, Thomas AF et al (2012) Temperature-dependent mechanical and long crack behavior of zirconium diboride–silicon carbide composite. J Eur Ceram Soc 32:3453–3462CrossRef
21.
Zurück zum Zitat Guo S, Nishimura T, Kagawa Y (2011) Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride-boron powders. Scripta Mater 65:1018–1021CrossRef Guo S, Nishimura T, Kagawa Y (2011) Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride-boron powders. Scripta Mater 65:1018–1021CrossRef
22.
Zurück zum Zitat Yang F, Zhang X, Han J, Du S (2008) Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Mater Des 29:1817–1820CrossRef Yang F, Zhang X, Han J, Du S (2008) Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Mater Des 29:1817–1820CrossRef
23.
Zurück zum Zitat Ghosh D, Subhash G, Radhakrishnan R, Sudarshan TS (2008) Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite. Acta Mater 56:3011–3022CrossRef Ghosh D, Subhash G, Radhakrishnan R, Sudarshan TS (2008) Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite. Acta Mater 56:3011–3022CrossRef
24.
Zurück zum Zitat Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory Diborides of Zirconium and Hafnium. J Am Ceram Soc 90:1347–1364CrossRef Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory Diborides of Zirconium and Hafnium. J Am Ceram Soc 90:1347–1364CrossRef
25.
Zurück zum Zitat Guo S-Q (2009) Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc 29:995–1011CrossRef Guo S-Q (2009) Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc 29:995–1011CrossRef
26.
Zurück zum Zitat Tian W-B, Kan Y-M, Zhang G-J, Wang P-L (2008) Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics. Mater Sci Eng, A 487:568–573CrossRef Tian W-B, Kan Y-M, Zhang G-J, Wang P-L (2008) Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics. Mater Sci Eng, A 487:568–573CrossRef
27.
Zurück zum Zitat Sim G-D, Choi YS, Lee D et al (2016) High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016K. Acta Mater 113:32–40CrossRef Sim G-D, Choi YS, Lee D et al (2016) High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016K. Acta Mater 113:32–40CrossRef
28.
Zurück zum Zitat Zhu S, Fahrenholtz WG, Hilmas GE (2007) Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J Eur Ceram Soc 27:2077–2083CrossRef Zhu S, Fahrenholtz WG, Hilmas GE (2007) Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J Eur Ceram Soc 27:2077–2083CrossRef
29.
Zurück zum Zitat Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros Sci 47:2020–2033CrossRef Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros Sci 47:2020–2033CrossRef
30.
Zurück zum Zitat Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng, A 346:310–319CrossRef Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng, A 346:310–319CrossRef
31.
Zurück zum Zitat Lönnberg B (1988) Thermal expansion studies on the group IV–VII transition metal diborides. J Less Common Met 141:145–156CrossRef Lönnberg B (1988) Thermal expansion studies on the group IV–VII transition metal diborides. J Less Common Met 141:145–156CrossRef
34.
Zurück zum Zitat Cardarelli F (2000) Materials handbook. Springer, U. K., pp 342–364CrossRef Cardarelli F (2000) Materials handbook. Springer, U. K., pp 342–364CrossRef
35.
Zurück zum Zitat Norton JT, Blumenthal H, Sindeband SJ (1949) Properties of chromium boride and sintered chromium boride. JOM 1:749–751CrossRef Norton JT, Blumenthal H, Sindeband SJ (1949) Properties of chromium boride and sintered chromium boride. JOM 1:749–751CrossRef
36.
Zurück zum Zitat Samsonov GV (1956) The heat formation of borides of some transition metals (in Russian). Zhur Fiz Khim 30 Samsonov GV (1956) The heat formation of borides of some transition metals (in Russian). Zhur Fiz Khim 30
37.
Zurück zum Zitat Samsonov GV, Vinitskii IM (1976) Tyгoплaвкиe coeдинeния : cпpaвoчник (Translation in Japanese) Japan-Soviet news agency, Japan Samsonov GV, Vinitskii IM (1976) Tyгoплaвкиe coeдинeния : cпpaвoчник (Translation in Japanese) Japan-Soviet news agency, Japan
38.
Zurück zum Zitat Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827CrossRef Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827CrossRef
39.
Zurück zum Zitat Kuzenkova MA, Kislyi PS (1965) The oxidation resistance of alloys of zirconium boride with molybdenum disilicide. Sov Powder Metall Met Ceram 4:841–844CrossRef Kuzenkova MA, Kislyi PS (1965) The oxidation resistance of alloys of zirconium boride with molybdenum disilicide. Sov Powder Metall Met Ceram 4:841–844CrossRef
40.
Zurück zum Zitat Gorbunov AE (1966) Carbothermic method of preparation of chromium, molybdenum, and zirconium borides. Sov Powder Metall Met Ceram 5:885–888CrossRef Gorbunov AE (1966) Carbothermic method of preparation of chromium, molybdenum, and zirconium borides. Sov Powder Metall Met Ceram 5:885–888CrossRef
41.
Zurück zum Zitat Mattuck JBB (1966) High-Temperature Oxidation III. Zirconium and Hafnium Diborides. J Electrochem Soc 113:908–914CrossRef Mattuck JBB (1966) High-Temperature Oxidation III. Zirconium and Hafnium Diborides. J Electrochem Soc 113:908–914CrossRef
42.
Zurück zum Zitat Mattuck JBB (1967) High-temperature oxidation IV. Zirconium and hafnium carbides. J Electrochem Soc 114:1030–1033CrossRef Mattuck JBB (1967) High-temperature oxidation IV. Zirconium and hafnium carbides. J Electrochem Soc 114:1030–1033CrossRef
43.
Zurück zum Zitat Irving RJ, Worsley IG (1968) The oxidation of titanium diboride and zirconium diboride at high temperatures. J Less Common Met 16:103–112CrossRef Irving RJ, Worsley IG (1968) The oxidation of titanium diboride and zirconium diboride at high temperatures. J Less Common Met 16:103–112CrossRef
44.
Zurück zum Zitat Gropyanov VM, Bel’tyukova LM (1968) Sintering and recrystallization of ZrC-ZrB2 compacts. Sov Powder Metall Met Ceram 7:527–533CrossRef Gropyanov VM, Bel’tyukova LM (1968) Sintering and recrystallization of ZrC-ZrB2 compacts. Sov Powder Metall Met Ceram 7:527–533CrossRef
45.
Zurück zum Zitat Kalish D, Clougherty EV, Kreder K (1969) Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J Am Ceram Soc 52:30–36CrossRef Kalish D, Clougherty EV, Kreder K (1969) Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J Am Ceram Soc 52:30–36CrossRef
46.
Zurück zum Zitat Kaufman L (1970) Boride composites - A new generation of nose cap and leading edge materials for reusable lifting reentry systems. Adv Space Transp Meet Kaufman L (1970) Boride composites - A new generation of nose cap and leading edge materials for reusable lifting reentry systems. Adv Space Transp Meet
47.
Zurück zum Zitat Medvedeva OA (1971) Technical alloys of the system ZrB2–ZrN. Sov Powder Metall Met Ceram 10:27–29CrossRef Medvedeva OA (1971) Technical alloys of the system ZrB2–ZrN. Sov Powder Metall Met Ceram 10:27–29CrossRef
48.
Zurück zum Zitat Tripp WC, Graham HC (1971) Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500 °C. J Electrochem Soc 118:1195CrossRef Tripp WC, Graham HC (1971) Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500 °C. J Electrochem Soc 118:1195CrossRef
49.
Zurück zum Zitat Lavrenko VA, Yagupolskaya LN, Kuznetsova LI et al (1974) The oxidation of ZrB2, TaB2, NbB2, and W2B5 in atomic oxygen and by anodic polarization. Oxid Met 8:131–137CrossRef Lavrenko VA, Yagupolskaya LN, Kuznetsova LI et al (1974) The oxidation of ZrB2, TaB2, NbB2, and W2B5 in atomic oxygen and by anodic polarization. Oxid Met 8:131–137CrossRef
50.
Zurück zum Zitat Hinze JW (1975) The High-Temperature Oxidation Behavior of a HfB2-20 v/o SiC Composite. J Electrochem Soc 122:1249CrossRef Hinze JW (1975) The High-Temperature Oxidation Behavior of a HfB2-20 v/o SiC Composite. J Electrochem Soc 122:1249CrossRef
51.
Zurück zum Zitat Voitovich BF, Pugach EA (1975) High-temperature oxidation of borides of the group IV metals. Sov Powder Metall Met Ceram 14:231–235CrossRef Voitovich BF, Pugach EA (1975) High-temperature oxidation of borides of the group IV metals. Sov Powder Metall Met Ceram 14:231–235CrossRef
52.
Zurück zum Zitat Otani S, Ishizawa Y (1996) Preparation of ZrB2 single crystals by the floating zone method. J Cryst Growth 165:319–322CrossRef Otani S, Ishizawa Y (1996) Preparation of ZrB2 single crystals by the floating zone method. J Cryst Growth 165:319–322CrossRef
53.
Zurück zum Zitat Monteverde F, Savino R (2007) Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions. J Eur Ceram Soc 27:4797–4805CrossRef Monteverde F, Savino R (2007) Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions. J Eur Ceram Soc 27:4797–4805CrossRef
54.
Zurück zum Zitat Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2007) Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J Eur Ceram Soc 27:2729–2736CrossRef Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2007) Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J Eur Ceram Soc 27:2729–2736CrossRef
55.
Zurück zum Zitat Tu R, Hirayama H, Goto T (2008) Preparation of ZrB2–SiC composites by arc melting and their properties. J Ceram Soc Japan 116:431–435CrossRef Tu R, Hirayama H, Goto T (2008) Preparation of ZrB2–SiC composites by arc melting and their properties. J Ceram Soc Japan 116:431–435CrossRef
56.
Zurück zum Zitat Guo S-Q, Nishimura T, Mizuguchi T, Kagawa Y (2008) Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites. J Eur Ceram Soc 28:1891–1898CrossRef Guo S-Q, Nishimura T, Mizuguchi T, Kagawa Y (2008) Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites. J Eur Ceram Soc 28:1891–1898CrossRef
57.
Zurück zum Zitat Guo S-Q, Kagawa Y, Nishimura T et al (2008) Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. J Eur Ceram Soc 28:1279–1285CrossRef Guo S-Q, Kagawa Y, Nishimura T et al (2008) Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. J Eur Ceram Soc 28:1279–1285CrossRef
58.
Zurück zum Zitat Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater Lett 62:432–435CrossRef Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater Lett 62:432–435CrossRef
59.
Zurück zum Zitat Guo S-Q, Kagawa Y, Nishimura T, Tanaka H (2008) Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Mater 58:579–582CrossRef Guo S-Q, Kagawa Y, Nishimura T, Tanaka H (2008) Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Mater 58:579–582CrossRef
60.
Zurück zum Zitat Yang F, Zhang X, Han J, Du S (2008) Mechanical properties of short carbon fiber reinforced ZrB2–SiC ceramic matrix composites. Mater Lett 62:2925–2927CrossRef Yang F, Zhang X, Han J, Du S (2008) Mechanical properties of short carbon fiber reinforced ZrB2–SiC ceramic matrix composites. Mater Lett 62:2925–2927CrossRef
61.
Zurück zum Zitat Guo S-Q, Yang J-M, Tanaka H, Kagawa Y (2008) Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol 68:3033–3040CrossRef Guo S-Q, Yang J-M, Tanaka H, Kagawa Y (2008) Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol 68:3033–3040CrossRef
62.
Zurück zum Zitat Guo S-Q, Kagawa Y, Nishimura T (2009) Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc 29:787–794CrossRef Guo S-Q, Kagawa Y, Nishimura T (2009) Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc 29:787–794CrossRef
63.
Zurück zum Zitat Meng S, Chen H, Hu J, Wang Z (2011) Radiative properties characterization of ZrB2–SiC-based ultrahigh temperature ceramic at high temperature. Mater Des 32:377–381CrossRef Meng S, Chen H, Hu J, Wang Z (2011) Radiative properties characterization of ZrB2–SiC-based ultrahigh temperature ceramic at high temperature. Mater Des 32:377–381CrossRef
64.
Zurück zum Zitat Meng S, Qi F, Chen H et al (2011) The repeated thermal shock behaviors of a ZrB2–SiC composite heated by electric resistance method. Int J Refract Met Hard Mater 29:44–48CrossRef Meng S, Qi F, Chen H et al (2011) The repeated thermal shock behaviors of a ZrB2–SiC composite heated by electric resistance method. Int J Refract Met Hard Mater 29:44–48CrossRef
65.
Zurück zum Zitat Talmy IG, Zaykoski JA, Opeka MM, Smith AH (2011) Properties of ceramics in the system ZrB2–Ta5Si3. J Mater Res 21:2593–2599CrossRef Talmy IG, Zaykoski JA, Opeka MM, Smith AH (2011) Properties of ceramics in the system ZrB2–Ta5Si3. J Mater Res 21:2593–2599CrossRef
66.
Zurück zum Zitat Natividad SL, Marotto VR, Walker LS et al (2011) Tape casting thin, continuous, homogenous, and flexible tapes of ZrB2. J Am Ceram Soc 94:2749–2753CrossRef Natividad SL, Marotto VR, Walker LS et al (2011) Tape casting thin, continuous, homogenous, and flexible tapes of ZrB2. J Am Ceram Soc 94:2749–2753CrossRef
67.
Zurück zum Zitat Silvestroni L, Sciti D (2011) Oxidation of ZrB2 ceramics containing sic as particles, whiskers, or short fibers. J Am Ceram Soc 94:2796–2799CrossRef Silvestroni L, Sciti D (2011) Oxidation of ZrB2 ceramics containing sic as particles, whiskers, or short fibers. J Am Ceram Soc 94:2796–2799CrossRef
68.
Zurück zum Zitat Akin I, Goller G (2012) Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites. J Ceram Soc Japan 120:143–149CrossRef Akin I, Goller G (2012) Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites. J Ceram Soc Japan 120:143–149CrossRef
69.
Zurück zum Zitat Jayaseelan DD, Zapata-Solvas E, Brown P, Lee WE (2012) In situ formation of oxidation resistant refractory coatings on SiC-Reinforced ZrB2 ultra high temperature ceramics. J Am Ceram Soc 95:1247–1254CrossRef Jayaseelan DD, Zapata-Solvas E, Brown P, Lee WE (2012) In situ formation of oxidation resistant refractory coatings on SiC-Reinforced ZrB2 ultra high temperature ceramics. J Am Ceram Soc 95:1247–1254CrossRef
70.
Zurück zum Zitat Gupta N, Mukhopadhyay A, Pavani K, Basu B (2012) Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties. Mater Sci Eng, A 534:111–118CrossRef Gupta N, Mukhopadhyay A, Pavani K, Basu B (2012) Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties. Mater Sci Eng, A 534:111–118CrossRef
71.
Zurück zum Zitat Hu P, Gui K, Yang Y et al (2013) Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-based ultra high temperature ceramic composites. Mater 6:1730–1744CrossRef Hu P, Gui K, Yang Y et al (2013) Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-based ultra high temperature ceramic composites. Mater 6:1730–1744CrossRef
72.
Zurück zum Zitat Guo S (2014) Densification, microstructure, elastic and mechanical properties of reactive hot-pressed ZrB2–ZrC–Zr cermets. J Eur Ceram Soc 34:621–632CrossRef Guo S (2014) Densification, microstructure, elastic and mechanical properties of reactive hot-pressed ZrB2–ZrC–Zr cermets. J Eur Ceram Soc 34:621–632CrossRef
73.
Zurück zum Zitat Asl MS, Kakroudi MG (2014) Fractographical assessment of densification mechanisms in hot pressed ZrB2–SiC composites. Ceram Intl 40:15273–15281CrossRef Asl MS, Kakroudi MG (2014) Fractographical assessment of densification mechanisms in hot pressed ZrB2–SiC composites. Ceram Intl 40:15273–15281CrossRef
74.
Zurück zum Zitat Gonzalez-Julian J, Cedillos-Barraza O, Döring S et al (2014) Enhanced oxidation resistance of ZrB2/SiC composite through in situ reaction of gadolinium oxide in patterned surface cavities. J Eur Ceram Soc 34:4157–4166CrossRef Gonzalez-Julian J, Cedillos-Barraza O, Döring S et al (2014) Enhanced oxidation resistance of ZrB2/SiC composite through in situ reaction of gadolinium oxide in patterned surface cavities. J Eur Ceram Soc 34:4157–4166CrossRef
75.
Zurück zum Zitat Asl MS, Kakroudi MG, Noori S (2015) Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd 619:481–487CrossRef Asl MS, Kakroudi MG, Noori S (2015) Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd 619:481–487CrossRef
76.
Zurück zum Zitat Asl MS, Nayebi B, Ahmadi Z et al (2015) Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Mater Charact 102:137–145CrossRef Asl MS, Nayebi B, Ahmadi Z et al (2015) Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Mater Charact 102:137–145CrossRef
77.
Zurück zum Zitat Vafa NP, Asl MS, Zamharir MJ, Kakroudi MG (2015) Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part I_ Densification behavior. Ceram Intl 41:8388–8396CrossRef Vafa NP, Asl MS, Zamharir MJ, Kakroudi MG (2015) Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part I_ Densification behavior. Ceram Intl 41:8388–8396CrossRef
78.
Zurück zum Zitat Zamharir MJ, Asl MS, Kakroudi MG et al (2015) Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25vol% SiC UHTCs. Ceram Intl 41:9628–9636CrossRef Zamharir MJ, Asl MS, Kakroudi MG et al (2015) Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25vol% SiC UHTCs. Ceram Intl 41:9628–9636CrossRef
79.
Zurück zum Zitat Rodríguez-Sánchez J, Sánchez-González E, Guiberteau F, Ortiz AL (2015) Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J Eur Ceram Soc 35:3179–3185CrossRef Rodríguez-Sánchez J, Sánchez-González E, Guiberteau F, Ortiz AL (2015) Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J Eur Ceram Soc 35:3179–3185CrossRef
80.
Zurück zum Zitat Li Y, Li Q, Wang Z, Lv L (2016) Oxidation behavior of laminated ZrB2–SiC composites and monolithic ZrB2–SiC composites. Ceram Intl 42:2063–2069CrossRef Li Y, Li Q, Wang Z, Lv L (2016) Oxidation behavior of laminated ZrB2–SiC composites and monolithic ZrB2–SiC composites. Ceram Intl 42:2063–2069CrossRef
81.
Zurück zum Zitat Chamberlain AL, Fahrenholtz WG, Hilmas GE (2009) Reactive hot pressing of zirconium diboride. J Eur Ceram Soc 29:3401–3408CrossRef Chamberlain AL, Fahrenholtz WG, Hilmas GE (2009) Reactive hot pressing of zirconium diboride. J Eur Ceram Soc 29:3401–3408CrossRef
82.
Zurück zum Zitat Wang H, Wang C-A, Yao X, Fang D (2007) Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. J Am Ceram Soc 90:1992–1997CrossRef Wang H, Wang C-A, Yao X, Fang D (2007) Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. J Am Ceram Soc 90:1992–1997CrossRef
83.
Zurück zum Zitat Monteverde F, Scatteia L (2007) Resistance to thermal shock and to oxidation of metal diborides SiC ceramics for aerospace application. J Am Ceram Soc 90:1130–1138CrossRef Monteverde F, Scatteia L (2007) Resistance to thermal shock and to oxidation of metal diborides SiC ceramics for aerospace application. J Am Ceram Soc 90:1130–1138CrossRef
85.
Zurück zum Zitat Voitovich RF, Pugach EA, Men’shikova LA (1967) High-temperature oxidation of zirconium diboride. Powder Metall Met Ceram 6:462–465 Voitovich RF, Pugach EA, Men’shikova LA (1967) High-temperature oxidation of zirconium diboride. Powder Metall Met Ceram 6:462–465
86.
Zurück zum Zitat Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88:3509–3512CrossRef Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88:3509–3512CrossRef
87.
Zurück zum Zitat Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2007) A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater 55:5999–6010CrossRef Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2007) A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater 55:5999–6010CrossRef
88.
Zurück zum Zitat Grigoriev ON, Galanov BA, Lavrenko VA et al (2010) Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. J Eur Ceram Soc 30:2397–2405CrossRef Grigoriev ON, Galanov BA, Lavrenko VA et al (2010) Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. J Eur Ceram Soc 30:2397–2405CrossRef
89.
Zurück zum Zitat Silvestroni L, Meriggi G, Sciti D (2014) Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros Sci 83:281–291CrossRef Silvestroni L, Meriggi G, Sciti D (2014) Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros Sci 83:281–291CrossRef
90.
Zurück zum Zitat Sha JJ, Li J, Wang SH et al (2015) Toughening effect of short carbon fibers in the ZrB2–ZrSi2 ceramic composites. Mater Des 75:160–165CrossRef Sha JJ, Li J, Wang SH et al (2015) Toughening effect of short carbon fibers in the ZrB2–ZrSi2 ceramic composites. Mater Des 75:160–165CrossRef
91.
Zurück zum Zitat Monteverde F, Bellosi A (2005) Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci 7:622–630CrossRef Monteverde F, Bellosi A (2005) Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci 7:622–630CrossRef
92.
Zurück zum Zitat Monteverde F (2005) Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys A 82:329–337CrossRef Monteverde F (2005) Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys A 82:329–337CrossRef
93.
Zurück zum Zitat Mikkelsen JC Jr (1984) Self-diffusivity of network oxygen in vitreous SiO2. Appl Phys Lett 45:1187–1189CrossRef Mikkelsen JC Jr (1984) Self-diffusivity of network oxygen in vitreous SiO2. Appl Phys Lett 45:1187–1189CrossRef
94.
Zurück zum Zitat Williams PA, Sakidja R, Perepezko JH, Ritt P (2012) Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J Eur Ceram Soc 32:3875–3883CrossRef Williams PA, Sakidja R, Perepezko JH, Ritt P (2012) Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J Eur Ceram Soc 32:3875–3883CrossRef
95.
Zurück zum Zitat Han W-B, Hu P, Zhang X-H et al (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91:3328–3334CrossRef Han W-B, Hu P, Zhang X-H et al (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91:3328–3334CrossRef
96.
Zurück zum Zitat Inoue R, Arai Y, Kubota Y (2017) Oxidation behaviors of ZrB2–SiC binary composites above 2000 °C. Ceram Intl 43:8081–8088CrossRef Inoue R, Arai Y, Kubota Y (2017) Oxidation behaviors of ZrB2–SiC binary composites above 2000 °C. Ceram Intl 43:8081–8088CrossRef
97.
Zurück zum Zitat Han J, Hu P, Zhang X et al (2008) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos Sci Technol 68:799–806CrossRef Han J, Hu P, Zhang X et al (2008) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos Sci Technol 68:799–806CrossRef
98.
Zurück zum Zitat Lavrenko VA, Panasyuk AD, Protsenko TG et al (1982) High-temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Sov Powder Metall Met Ceram 21:471–473CrossRef Lavrenko VA, Panasyuk AD, Protsenko TG et al (1982) High-temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Sov Powder Metall Met Ceram 21:471–473CrossRef
99.
Zurück zum Zitat Sciti D, Brach M, Bellosi A (2011) Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J Mater Res 20:922–930CrossRef Sciti D, Brach M, Bellosi A (2011) Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J Mater Res 20:922–930CrossRef
101.
Zurück zum Zitat Hu P, Zhang X-H, Han J-C et al (2010) Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93:345–349CrossRef Hu P, Zhang X-H, Han J-C et al (2010) Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93:345–349CrossRef
102.
Zurück zum Zitat Medri V, Monteverde F, Balbo A, Bellosi A (2005) Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater 7:159–163CrossRef Medri V, Monteverde F, Balbo A, Bellosi A (2005) Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater 7:159–163CrossRef
103.
Zurück zum Zitat Qu Q, Han J, Han W et al (2008) In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater Chem Phys 110:216–221CrossRef Qu Q, Han J, Han W et al (2008) In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater Chem Phys 110:216–221CrossRef
104.
Zurück zum Zitat Zhang X, Qu Q, Han J et al (2008) Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Mater 59:753–756CrossRef Zhang X, Qu Q, Han J et al (2008) Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Mater 59:753–756CrossRef
105.
Zurück zum Zitat Wang Z, Wu Z, Shi G (2011) The oxidation behaviors of a ZrB2–SiC–ZrC ceramic. Solid State Sci 13:534–538CrossRef Wang Z, Wu Z, Shi G (2011) The oxidation behaviors of a ZrB2–SiC–ZrC ceramic. Solid State Sci 13:534–538CrossRef
106.
Zurück zum Zitat Zhanjun W, Zhi W, Qiang Q, Guodong S (2011) Oxidation mechanism of a ZrB2–SiC–ZrC ceramic heated through high frequency induction at 1600 °C. Corros Sci 53:2344–2349CrossRef Zhanjun W, Zhi W, Qiang Q, Guodong S (2011) Oxidation mechanism of a ZrB2–SiC–ZrC ceramic heated through high frequency induction at 1600 °C. Corros Sci 53:2344–2349CrossRef
107.
Zurück zum Zitat Wu Z, Wang Z, Shi G, Sheng J (2011) Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic. Compos Sci Technol 71:1501–1506CrossRef Wu Z, Wang Z, Shi G, Sheng J (2011) Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic. Compos Sci Technol 71:1501–1506CrossRef
108.
Zurück zum Zitat Jalaly M, Tamizifar M, Bafghi MS, Gotor FJ (2013) Mechanochemical synthesis of ZrB2–SiC–ZrC nanocomposite powder by metallothermic reduction of zircon. J Alloys Compd 581:782–787CrossRef Jalaly M, Tamizifar M, Bafghi MS, Gotor FJ (2013) Mechanochemical synthesis of ZrB2–SiC–ZrC nanocomposite powder by metallothermic reduction of zircon. J Alloys Compd 581:782–787CrossRef
109.
Zurück zum Zitat Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Changed oxidation behavior of ZrB2–SiC ceramics with the addition of ZrC. Ceram Intl 41:8247–8251CrossRef Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Changed oxidation behavior of ZrB2–SiC ceramics with the addition of ZrC. Ceram Intl 41:8247–8251CrossRef
110.
Zurück zum Zitat Wang Z, Zhou P, Wu Z (2015) Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–ZrC ceramic at temperature difference from 800 to 1900 °C. Corros Sci 98:233–239CrossRef Wang Z, Zhou P, Wu Z (2015) Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–ZrC ceramic at temperature difference from 800 to 1900 °C. Corros Sci 98:233–239CrossRef
111.
Zurück zum Zitat Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Contour maps of mechanical properties in ternary ZrB2–SiC–ZrC ceramic system. Scripta Mater 107:140–144CrossRef Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Contour maps of mechanical properties in ternary ZrB2–SiC–ZrC ceramic system. Scripta Mater 107:140–144CrossRef
112.
Zurück zum Zitat Arai Y, Inoue R, Tanaka H et al (2016) In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500 °C using high-temperature observation system. J Ceram Soc Japan 124:890–897CrossRef Arai Y, Inoue R, Tanaka H et al (2016) In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500 °C using high-temperature observation system. J Ceram Soc Japan 124:890–897CrossRef
113.
Zurück zum Zitat Emami SM, Salahi E, Zakeri M, Tayebifard SA (2016) Synthesis of ZrB2–SiC–ZrC nanocomposite by spark plasma in ZrSiO4/B2O3/C/Mg system. Ceram Intl 42:6581–6586CrossRef Emami SM, Salahi E, Zakeri M, Tayebifard SA (2016) Synthesis of ZrB2–SiC–ZrC nanocomposite by spark plasma in ZrSiO4/B2O3/C/Mg system. Ceram Intl 42:6581–6586CrossRef
114.
Zurück zum Zitat Kubota Y, Tanaka H, Arai Y et al (2017) Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J Eur Ceram Soc 37:1187–1194CrossRef Kubota Y, Tanaka H, Arai Y et al (2017) Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J Eur Ceram Soc 37:1187–1194CrossRef
115.
Zurück zum Zitat Kubota Y, Yano M, Inoue R et al (2018) Oxidation behavior of ZrB2–SiC–ZrC in oxygen-hydrogen torch environment. J Eur Ceram Soc 38:1095–1102CrossRef Kubota Y, Yano M, Inoue R et al (2018) Oxidation behavior of ZrB2–SiC–ZrC in oxygen-hydrogen torch environment. J Eur Ceram Soc 38:1095–1102CrossRef
116.
Zurück zum Zitat Inoue R, Arai Y, Kubota Y et al (2018) Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000 °C. J Alloys Compd 731:310–317CrossRef Inoue R, Arai Y, Kubota Y et al (2018) Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000 °C. J Alloys Compd 731:310–317CrossRef
117.
Zurück zum Zitat Vojtovich RF, Pugach EA (1973) High-temperature oxidation of ZrC and HfC. Sov Powder Metall Metal Ceram 12:916–921 Vojtovich RF, Pugach EA (1973) High-temperature oxidation of ZrC and HfC. Sov Powder Metall Metal Ceram 12:916–921
118.
Zurück zum Zitat Rao GAR, Venugopal V (1994) Kinetics and mechanism of the oxidation of ZrC. J Alloys Compd 206:237–242CrossRef Rao GAR, Venugopal V (1994) Kinetics and mechanism of the oxidation of ZrC. J Alloys Compd 206:237–242CrossRef
119.
Zurück zum Zitat Opeka MM, Talmy IG, Wuchina EJ et al (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414CrossRef Opeka MM, Talmy IG, Wuchina EJ et al (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414CrossRef
Metadaten
Titel
Oxidation of ZrB2 and its composites: a review
verfasst von
Ryo Inoue
Yutaro Arai
Yuki Kubota
Yasuo Kogo
Ken Goto
Publikationsdatum
25.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2601-0

Weitere Artikel der Ausgabe 21/2018

Journal of Materials Science 21/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.