Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 1/2022

01.02.2022 | Original Paper

Parameters Controlling Strength, Stiffness and Durability of a Fibre-Reinforced Clay

verfasst von: Abdullah Ekinci, Ala Abki, Mehdi Mirzababaei

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to highlight the effect of fibre–clay contact area in a fibre-reinforced clay matrix with different fibre contents and types. Fibre-reinforced samples were prepared at two compaction densities (1600 and 1800 kg/m3) using four fibre types (i.e. basalt, carbon, polypropylene and glass) with five fibre contents of 0.1–0.5%. A series of unconfined compressive strength (UCS), shear wave velocity and soaking tests were carried out to determine the strength, stiffness, peak strain energy and durability of the compacted samples. A statistical approach (ANOVA) was utilized to determine significant differences between variables affecting the parameters of the fibre-reinforced clay. Results indicated that carbon fibre reinforcement achieved the highest UCS value (684 kPa) and initial shear modulus (568 MPa), and polypropylene fibre reinforcement proposed the highest strain energy at peak (25 kJ/m3) due to its high strain at failure. The optimum fibre content concerning the peak strain energy of high-density samples was found to be 0.3% fibre. Carbon and polypropylene fibre-reinforced samples lasted the longest (5 days) in soaking conditions. It is recommended to reinforce the soil with 0.3% of carbon fibre compacted at the maximum dry density for field applications that require high strength and durability performance. In this study, a novel regression model has been developed to correlate the UCS and shear modulus (G0) of the fibre-reinforced clay. The proposed correlations successfully predict the UCS of fibre-reinforced soils with different soil types, fibre contents and densities. The results revealed that the sample density and fibre–clay contact area is dominant to determine the strength, stiffness and durability characteristics of the fibre-reinforced clay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kerisel J (1975) Old structures in relation to soil conditions. Geotechnique 25:433–483CrossRef Kerisel J (1975) Old structures in relation to soil conditions. Geotechnique 25:433–483CrossRef
2.
Zurück zum Zitat Jones C (1996) Earth reinforcement and soil structures. T. Telford; ASCE Press, London; New YorkCrossRef Jones C (1996) Earth reinforcement and soil structures. T. Telford; ASCE Press, London; New YorkCrossRef
3.
Zurück zum Zitat Tang A-M, Cui Y-J, Trinh V-N et al (2009) Analysis of the railway heave induced by soil swelling at a site in southern France. Eng Geol 106:68–77CrossRef Tang A-M, Cui Y-J, Trinh V-N et al (2009) Analysis of the railway heave induced by soil swelling at a site in southern France. Eng Geol 106:68–77CrossRef
4.
Zurück zum Zitat Yilmaz I, Civelekoglu B (2009) Gypsum: an additive for stabilization of swelling clay soils. Appl Clay Sci 44:166–172CrossRef Yilmaz I, Civelekoglu B (2009) Gypsum: an additive for stabilization of swelling clay soils. Appl Clay Sci 44:166–172CrossRef
5.
Zurück zum Zitat Ozer M, Ulusay R, Isik NS (2012) Evaluation of damage to light structures erected on a fill material rich in expansive soil. Bull Eng Geol Environ 71:21–36CrossRef Ozer M, Ulusay R, Isik NS (2012) Evaluation of damage to light structures erected on a fill material rich in expansive soil. Bull Eng Geol Environ 71:21–36CrossRef
6.
Zurück zum Zitat Rezaei M, Ajalloeian R, Ghafoori M (2012) Geotechnical properties of problematic soils emphasis on collapsible cases. Int J Geosci 3:105CrossRef Rezaei M, Ajalloeian R, Ghafoori M (2012) Geotechnical properties of problematic soils emphasis on collapsible cases. Int J Geosci 3:105CrossRef
7.
Zurück zum Zitat Jamsawang P, Nuansrithong N, Voottipruex P et al (2017) Laboratory investigations on the swelling behavior of composite expansive clays stabilized with shallow and deep clay-cement mixing methods. Appl Clay Sci 148:83–94CrossRef Jamsawang P, Nuansrithong N, Voottipruex P et al (2017) Laboratory investigations on the swelling behavior of composite expansive clays stabilized with shallow and deep clay-cement mixing methods. Appl Clay Sci 148:83–94CrossRef
8.
Zurück zum Zitat Młynarek Z, Stefaniak G, Wierzbicki J (2012) Geotechnical parameters of alluvial soils from in-situ tests. Arch Hydro-Eng Environ Mech 59:63–81CrossRef Młynarek Z, Stefaniak G, Wierzbicki J (2012) Geotechnical parameters of alluvial soils from in-situ tests. Arch Hydro-Eng Environ Mech 59:63–81CrossRef
9.
Zurück zum Zitat Cooper MR, Rose AN (1999) Stone column support for an embankment on deep alluvial soils. Proc Inst Civ Eng-Geotech Eng 137:15–25CrossRef Cooper MR, Rose AN (1999) Stone column support for an embankment on deep alluvial soils. Proc Inst Civ Eng-Geotech Eng 137:15–25CrossRef
10.
Zurück zum Zitat Li C, Zornberg JG (2003) Validation of discrete framework for fiber-reinforcement. In: Proc., North American Conf. on Geosynthetics. Citeseer Li C, Zornberg JG (2003) Validation of discrete framework for fiber-reinforcement. In: Proc., North American Conf. on Geosynthetics. Citeseer
11.
Zurück zum Zitat Li C, Zornberg JG (2005) Interface shear strength in fiber-reinforced soil. In: Proceedings of the international conference on soil mechanics and geotechnical engineering. Citeseer, p 1373 Li C, Zornberg JG (2005) Interface shear strength in fiber-reinforced soil. In: Proceedings of the international conference on soil mechanics and geotechnical engineering. Citeseer, p 1373
12.
Zurück zum Zitat Freilich BJ, Li C, Zornberg JG (2010) Effective shear strength of fiber-reinforced clays. In: 9th international conference on geosynthetics, Brazil. Citeseer, pp 1997–2000 Freilich BJ, Li C, Zornberg JG (2010) Effective shear strength of fiber-reinforced clays. In: 9th international conference on geosynthetics, Brazil. Citeseer, pp 1997–2000
13.
Zurück zum Zitat Tang C, Shi B, Gao W et al (2007) Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext Geomembr 25:194–202CrossRef Tang C, Shi B, Gao W et al (2007) Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext Geomembr 25:194–202CrossRef
14.
Zurück zum Zitat Özkul ZH, Baykal G (2007) Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. J Geotech Geoenviron Eng 133:767–781CrossRef Özkul ZH, Baykal G (2007) Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. J Geotech Geoenviron Eng 133:767–781CrossRef
15.
Zurück zum Zitat Ekinci A, Ferreira PMV (2012) The undrained mechanical behaviour of a fibre-reinforced heavily over-consolidated clay. ISSMGE TC211 and BBRI Ekinci A, Ferreira PMV (2012) The undrained mechanical behaviour of a fibre-reinforced heavily over-consolidated clay. ISSMGE TC211 and BBRI
16.
Zurück zum Zitat Mirzababaei M, Miraftab M, Mohamed M, McMahon P (2013) Unconfined compression strength of reinforced clays with carpet waste fibers. J Geotech Geoenviron Eng 139:483–493CrossRef Mirzababaei M, Miraftab M, Mohamed M, McMahon P (2013) Unconfined compression strength of reinforced clays with carpet waste fibers. J Geotech Geoenviron Eng 139:483–493CrossRef
17.
Zurück zum Zitat Falorca I, Pinto MIM (2011) Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynth Int 18:2–11CrossRef Falorca I, Pinto MIM (2011) Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynth Int 18:2–11CrossRef
18.
Zurück zum Zitat Mirzababaei M, Arulrajah A, Horpibulsuk S, Aldava M (2017) Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories. Geotext Geomembr 45:422–429CrossRef Mirzababaei M, Arulrajah A, Horpibulsuk S, Aldava M (2017) Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories. Geotext Geomembr 45:422–429CrossRef
19.
Zurück zum Zitat Indraratna AS, Balasubramanian AK, Khan MJ (1995) Effect of fly ash with lime and cement on the behavior of a soft clay. Q J Eng Geol Hydrogeol 28:131–142CrossRef Indraratna AS, Balasubramanian AK, Khan MJ (1995) Effect of fly ash with lime and cement on the behavior of a soft clay. Q J Eng Geol Hydrogeol 28:131–142CrossRef
20.
Zurück zum Zitat Xiao H, Wang W, Goh SH (2017) Effectiveness study for fly ash cement improved marine clay. Constr Build Mater 157:1053–1064CrossRef Xiao H, Wang W, Goh SH (2017) Effectiveness study for fly ash cement improved marine clay. Constr Build Mater 157:1053–1064CrossRef
21.
Zurück zum Zitat Bhurtel A, Eisazadeh A (2020) Strength and durability of bottom ash and lime stabilized Bangkok clay. KSCE J Civ Eng 24:404–411CrossRef Bhurtel A, Eisazadeh A (2020) Strength and durability of bottom ash and lime stabilized Bangkok clay. KSCE J Civ Eng 24:404–411CrossRef
22.
Zurück zum Zitat Kumar A, Gupta D (2016) Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotext Geomembr 44:466–474CrossRef Kumar A, Gupta D (2016) Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotext Geomembr 44:466–474CrossRef
23.
Zurück zum Zitat Estabragh AR, Namdar P, Javadi AA (2012) Behavior of cement-stabilized clay reinforced with nylon fiber. Geosynth Int 19:85–92CrossRef Estabragh AR, Namdar P, Javadi AA (2012) Behavior of cement-stabilized clay reinforced with nylon fiber. Geosynth Int 19:85–92CrossRef
24.
Zurück zum Zitat Fatahi B, Khabbaz H, Fatahi B (2012) Mechanical characteristics of soft clay treated with fibre and cement. Geosynth Int 19:252–262CrossRef Fatahi B, Khabbaz H, Fatahi B (2012) Mechanical characteristics of soft clay treated with fibre and cement. Geosynth Int 19:252–262CrossRef
25.
Zurück zum Zitat Cristelo N, Cunha VM, Dias M et al (2015) Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotext Geomembr 43:1–13CrossRef Cristelo N, Cunha VM, Dias M et al (2015) Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotext Geomembr 43:1–13CrossRef
26.
Zurück zum Zitat Chen M, Shen S-L, Arulrajah A et al (2015) Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotext Geomembr 43:515–523CrossRef Chen M, Shen S-L, Arulrajah A et al (2015) Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotext Geomembr 43:515–523CrossRef
27.
Zurück zum Zitat Olgun M (2013) Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynth Int 20:263–275CrossRef Olgun M (2013) Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynth Int 20:263–275CrossRef
28.
Zurück zum Zitat Venda Oliveira PJ, Correia AAS, Teles J, Custódio DG (2016) Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynth Int 23:171–182CrossRef Venda Oliveira PJ, Correia AAS, Teles J, Custódio DG (2016) Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynth Int 23:171–182CrossRef
29.
Zurück zum Zitat Ayeldeen M, Kitazume M (2017) Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotext Geomembr 45:592–602CrossRef Ayeldeen M, Kitazume M (2017) Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotext Geomembr 45:592–602CrossRef
30.
Zurück zum Zitat Mirzababaei M, Arulrajah A, Horpibulsuk S et al (2018) Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotext Geomembr 46:646–655CrossRef Mirzababaei M, Arulrajah A, Horpibulsuk S et al (2018) Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotext Geomembr 46:646–655CrossRef
31.
Zurück zum Zitat Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133:197–205CrossRef Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133:197–205CrossRef
32.
Zurück zum Zitat Ekinci A, Scheuermann Filho HC, Consoli NC (2020) Copper slag–hydrated lime–Portland cement stabilised marine-deposited clay. In: Proceedings of the Institution of Civil Engineers-ground improvement, pp 1–13 Ekinci A, Scheuermann Filho HC, Consoli NC (2020) Copper slag–hydrated lime–Portland cement stabilised marine-deposited clay. In: Proceedings of the Institution of Civil Engineers-ground improvement, pp 1–13
33.
Zurück zum Zitat Consoli NC, De Moraes RR, Festugato L (2011) Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynth Int 18:57–62CrossRef Consoli NC, De Moraes RR, Festugato L (2011) Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynth Int 18:57–62CrossRef
34.
Zurück zum Zitat Consoli NC, Fonseca A, Silva SR et al (2012) Parameters controlling stiffness and strength of artificially cemented soils. Géotechnique 62:177–183CrossRef Consoli NC, Fonseca A, Silva SR et al (2012) Parameters controlling stiffness and strength of artificially cemented soils. Géotechnique 62:177–183CrossRef
35.
Zurück zum Zitat Festugato L, Menger E, Benezra F et al (2017) Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotext Geomembr 45:77–82CrossRef Festugato L, Menger E, Benezra F et al (2017) Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotext Geomembr 45:77–82CrossRef
36.
Zurück zum Zitat Mirzababaei M, Mohamed M, Arulrajah A et al (2018) Practical approach to predict the shear strength of fibre-reinforced clay. Geosynth Int 25:50–66CrossRef Mirzababaei M, Mohamed M, Arulrajah A et al (2018) Practical approach to predict the shear strength of fibre-reinforced clay. Geosynth Int 25:50–66CrossRef
37.
Zurück zum Zitat Festugato L, da Silva AP, Diambra A et al (2018) Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotext Geomembr 46:155–165CrossRef Festugato L, da Silva AP, Diambra A et al (2018) Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotext Geomembr 46:155–165CrossRef
38.
Zurück zum Zitat MRTS08 (2010) Plant-mixed stabilised pavements using cement or cementitious blends. Department of Transport and Main Roads Technical Standard, Australia MRTS08 (2010) Plant-mixed stabilised pavements using cement or cementitious blends. Department of Transport and Main Roads Technical Standard, Australia
39.
Zurück zum Zitat CCANZ (2008) Cement stabilisation. Cement & Concrete Association of New Zealand, Wellington CCANZ (2008) Cement stabilisation. Cement & Concrete Association of New Zealand, Wellington
40.
Zurück zum Zitat FHWA (2014) Standard specifications for construction of roads and bridges on federal highway projects FP-14. Federal Highway Administration, Washington, D.C. FHWA (2014) Standard specifications for construction of roads and bridges on federal highway projects FP-14. Federal Highway Administration, Washington, D.C.
41.
Zurück zum Zitat Maclean DJ, Lewis WA (1963) British practice in the design and specification of cement-stabilized bases and subbases for roads. Highway Research Record Maclean DJ, Lewis WA (1963) British practice in the design and specification of cement-stabilized bases and subbases for roads. Highway Research Record
42.
Zurück zum Zitat JTJ034 (2000) Technical specifications for construction of highway roadbases. Ministry of Communications of the People’s Republic of China, Beijing JTJ034 (2000) Technical specifications for construction of highway roadbases. Ministry of Communications of the People’s Republic of China, Beijing
43.
Zurück zum Zitat KTS (2013) Türkiye Karayolları Teknik Sartnamesi, (Turkish Highway Technical Specification). KGM, Ankara KTS (2013) Türkiye Karayolları Teknik Sartnamesi, (Turkish Highway Technical Specification). KGM, Ankara
44.
Zurück zum Zitat Australia S (2002) The Australian earth building handbook. Standards Australia, Sydney Australia S (2002) The Australian earth building handbook. Standards Australia, Sydney
45.
Zurück zum Zitat Middleton GF, Schneider LM (1992) Earth-wall construction: Bulletin 5. CSIRO Middleton GF, Schneider LM (1992) Earth-wall construction: Bulletin 5. CSIRO
46.
Zurück zum Zitat NZS 4297 (1998) Engineering design of earth buildings. Standard New Zealand, Wellington NZS 4297 (1998) Engineering design of earth buildings. Standard New Zealand, Wellington
47.
Zurück zum Zitat General H, CBC (2009) Chapter 7 building codes general: part 4 new Mexico earthen building materials code. Housing and Construction General H, CBC (2009) Chapter 7 building codes general: part 4 new Mexico earthen building materials code. Housing and Construction
48.
Zurück zum Zitat Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2012) A simple review of soil reinforcement by using natural and synthetic fibers. Constr Build Mater 30:100–116CrossRef Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2012) A simple review of soil reinforcement by using natural and synthetic fibers. Constr Build Mater 30:100–116CrossRef
49.
Zurück zum Zitat Myadaraboina H, Law D, Patnaikuni I (2014) Durability of Basalt fibers in concrete medium. In: Australasia and Southeast Asia conference in structural engineering and construction (ASEA-SEC-2). ISEC Press, pp 445–450 Myadaraboina H, Law D, Patnaikuni I (2014) Durability of Basalt fibers in concrete medium. In: Australasia and Southeast Asia conference in structural engineering and construction (ASEA-SEC-2). ISEC Press, pp 445–450
50.
Zurück zum Zitat Yin S, Tuladhar R, Shi F et al (2015) Use of macro plastic fibres in concrete: a review. Constr Build Mater 93:180–188CrossRef Yin S, Tuladhar R, Shi F et al (2015) Use of macro plastic fibres in concrete: a review. Constr Build Mater 93:180–188CrossRef
51.
Zurück zum Zitat Pelisser F, Montedo ORK, Gleize PJP, Roman HR (2012) Mechanical properties of recycled PET fibers in concrete. Mater Res 15:679–686CrossRef Pelisser F, Montedo ORK, Gleize PJP, Roman HR (2012) Mechanical properties of recycled PET fibers in concrete. Mater Res 15:679–686CrossRef
52.
Zurück zum Zitat Lloyd S (2014) Steel fibers in concrete floor slabs. Concr Int 36:47–49 Lloyd S (2014) Steel fibers in concrete floor slabs. Concr Int 36:47–49
53.
Zurück zum Zitat Hakyemez Y, Turhan N, Sönmez I, Sümengen M (2000) The geology of the Turkish Republic of Northern Cyprus. Department of the Geological Surveys, General Directorate of the Minerals Research and Exploration of Turkey. Unpublished report 44 Hakyemez Y, Turhan N, Sönmez I, Sümengen M (2000) The geology of the Turkish Republic of Northern Cyprus. Department of the Geological Surveys, General Directorate of the Minerals Research and Exploration of Turkey. Unpublished report 44
59.
Zurück zum Zitat Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1:16–23CrossRef Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1:16–23CrossRef
60.
Zurück zum Zitat Moreira EB, Baldovino JA, Rose JL, dos Santos Izzo RL (2019) Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. J Rock Mech Geotech Eng 11:369–378CrossRef Moreira EB, Baldovino JA, Rose JL, dos Santos Izzo RL (2019) Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. J Rock Mech Geotech Eng 11:369–378CrossRef
63.
Zurück zum Zitat Maher MH, Ho YC (1994) Mechanical properties of kaolinite/fiber soil composite. J Geotech Eng 120:1381–1393CrossRef Maher MH, Ho YC (1994) Mechanical properties of kaolinite/fiber soil composite. J Geotech Eng 120:1381–1393CrossRef
64.
Zurück zum Zitat Jo B-W, Tae G-H, Kwon B-Y (2004) Ductility evaluation of prestressed concrete beams with CFRP tendons. J Reinf Plast Compos 23:843–859CrossRef Jo B-W, Tae G-H, Kwon B-Y (2004) Ductility evaluation of prestressed concrete beams with CFRP tendons. J Reinf Plast Compos 23:843–859CrossRef
72.
Zurück zum Zitat Ekinci A (2016) The mechanical properties of compacted clay from the Lambeth Group using fibre reinforcement. University College London, London Ekinci A (2016) The mechanical properties of compacted clay from the Lambeth Group using fibre reinforcement. University College London, London
73.
Zurück zum Zitat Adaska WS, Luhr DR (2004) Control of reflective cracking in cement stabilized pavements. In: Proceedings of 5th international RILEM conference on cracking in pavements, pp 309–316 Adaska WS, Luhr DR (2004) Control of reflective cracking in cement stabilized pavements. In: Proceedings of 5th international RILEM conference on cracking in pavements, pp 309–316
74.
Zurück zum Zitat Scullion T (2002) Precracking of soil–cement bases to reduce reflection cracking: field investigation. Transp Res Rec 1787:22–30CrossRef Scullion T (2002) Precracking of soil–cement bases to reduce reflection cracking: field investigation. Transp Res Rec 1787:22–30CrossRef
75.
Zurück zum Zitat Kumar A, Walia BS, Mohan J (2006) Compressive strength of fiber reinforced highly compressible clay. Constr Build Mater 20:1063–1068CrossRef Kumar A, Walia BS, Mohan J (2006) Compressive strength of fiber reinforced highly compressible clay. Constr Build Mater 20:1063–1068CrossRef
76.
Zurück zum Zitat Jiang H, Cai Y, Liu J (2010) Engineering properties of soils reinforced by short discrete polypropylene fiber. J Mater Civ Eng 22:1315–1322CrossRef Jiang H, Cai Y, Liu J (2010) Engineering properties of soils reinforced by short discrete polypropylene fiber. J Mater Civ Eng 22:1315–1322CrossRef
Metadaten
Titel
Parameters Controlling Strength, Stiffness and Durability of a Fibre-Reinforced Clay
verfasst von
Abdullah Ekinci
Ala Abki
Mehdi Mirzababaei
Publikationsdatum
01.02.2022
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 1/2022
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-022-00352-8

Weitere Artikel der Ausgabe 1/2022

International Journal of Geosynthetics and Ground Engineering 1/2022 Zur Ausgabe