Skip to main content

2015 | OriginalPaper | Buchkapitel

14. Parametric Convergence Bounds of Volterra-Type Nonlinear Systems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the bound characteristics of frequency response functions, evaluation of the convergence bound in the frequency domain for Volterra series expansion of nonlinear systems described by NARX models is studied. This provides new convergence criteria under which the nonlinear system of interest has a convergent Volterra series expansion, and the new criteria are expressed explicitly in terms of the input magnitude, model parameters, and frequency variable. The new convergence criteria are firstly developed for harmonic inputs, which are frequency-dependent, and then extended to multi-tone and general input cases, which are frequency-independent. Based on the theoretical analysis, a general procedure for calculating the convergence bound is provided. The results provide a fundamental basis for nonlinear signal processing using the Volterra series theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Batista ELO, Tobias OJ, Seara R (2010) A sparse-interpolated scheme for implementing adaptive Volterra filters. IEEE Trans Signal Process 58:2022–2035CrossRefMathSciNet Batista ELO, Tobias OJ, Seara R (2010) A sparse-interpolated scheme for implementing adaptive Volterra filters. IEEE Trans Signal Process 58:2022–2035CrossRefMathSciNet
Zurück zum Zitat Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst CAS-32(11):1150–1160CrossRefMathSciNet Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst CAS-32(11):1150–1160CrossRefMathSciNet
Zurück zum Zitat Buonomo A, Lo Schiavo A (2005) Perturbation analysis of nonlinear distortion in analog integrated circuits. IEEE Trans Circuits Syst I Reg Papers 52:1620–1631 Buonomo A, Lo Schiavo A (2005) Perturbation analysis of nonlinear distortion in analog integrated circuits. IEEE Trans Circuits Syst I Reg Papers 52:1620–1631
Zurück zum Zitat Crespo-Cadenas C, Reina-Tosina J, Madero-Ayora MJ, Munoz-Cruzado J (2010) A new approach to pruning Volterra models for power amplifiers. IEEE Trans Signal Process 58:2113–2120CrossRefMathSciNet Crespo-Cadenas C, Reina-Tosina J, Madero-Ayora MJ, Munoz-Cruzado J (2010) A new approach to pruning Volterra models for power amplifiers. IEEE Trans Signal Process 58:2113–2120CrossRefMathSciNet
Zurück zum Zitat Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press
Zurück zum Zitat Helie T, Laroche B (2011) Computation of convergence bounds for Volterra series of linear-analytic single-input systems. IEEE Trans Autom Control 56:2062–2072CrossRefMathSciNet Helie T, Laroche B (2011) Computation of convergence bounds for Volterra series of linear-analytic single-input systems. IEEE Trans Autom Control 56:2062–2072CrossRefMathSciNet
Zurück zum Zitat Hermann R (1990) Volterra modeling of digital magnetic saturation recording channels. IEEE Trans Magn 26:2125–2127CrossRef Hermann R (1990) Volterra modeling of digital magnetic saturation recording channels. IEEE Trans Magn 26:2125–2127CrossRef
Zurück zum Zitat Jing XJ, Xiao ZL (2014) An input-dependent convergence bound of Volterra series expansion of nonlinear systems. Automatica Jing XJ, Xiao ZL (2014) An input-dependent convergence bound of Volterra series expansion of nonlinear systems. Automatica
Zurück zum Zitat Jing XJ, Simpson D, Allen R, Newland P (2012) Understanding neuronal systems in movement control using Wiener/Volterra kernels: a dominant feature analysis. J Neurosci Methods 203(1):220–232CrossRef Jing XJ, Simpson D, Allen R, Newland P (2012) Understanding neuronal systems in movement control using Wiener/Volterra kernels: a dominant feature analysis. J Neurosci Methods 203(1):220–232CrossRef
Zurück zum Zitat Krall C, Witrisal K, Leus G, Koeppl H (2008) Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans Signal Process 56:4729–4737CrossRefMathSciNet Krall C, Witrisal K, Leus G, Koeppl H (2008) Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans Signal Process 56:4729–4737CrossRefMathSciNet
Zurück zum Zitat Kuech F, Kellermann W (2005) Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Trans Signal Process 53:564–575CrossRefMathSciNet Kuech F, Kellermann W (2005) Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Trans Signal Process 53:564–575CrossRefMathSciNet
Zurück zum Zitat Li LM, Billings SA (2011) Analysis of nonlinear oscillators using Volterra series in the frequency domain. J Sound Vib 330:337–355CrossRef Li LM, Billings SA (2011) Analysis of nonlinear oscillators using Volterra series in the frequency domain. J Sound Vib 330:337–355CrossRef
Zurück zum Zitat Li T, Jean J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49:1667–1676CrossRef Li T, Jean J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49:1667–1676CrossRef
Zurück zum Zitat Mileounis G, Kalouptsidis N (2009) Blind identification of second order Volterra systems with complex random inputs using higher order cumulants. IEEE Trans Signal Process 57:4129–4135CrossRefMathSciNet Mileounis G, Kalouptsidis N (2009) Blind identification of second order Volterra systems with complex random inputs using higher order cumulants. IEEE Trans Signal Process 57:4129–4135CrossRefMathSciNet
Zurück zum Zitat Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley-VCH Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley-VCH
Zurück zum Zitat Peng Z, Lang ZQ (2007) On the convergence of the Volterra-series representation of the Duffing’s oscillators subjected to harmonic excitations. J Sound Vib 305:322–332CrossRefMATHMathSciNet Peng Z, Lang ZQ (2007) On the convergence of the Volterra-series representation of the Duffing’s oscillators subjected to harmonic excitations. J Sound Vib 305:322–332CrossRefMATHMathSciNet
Zurück zum Zitat Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. In: Sanders JA, Verhulst F (eds) Applied mathematical sciences, vol 59. Springer, New York. 10+ 247 pp. Price DM 84.00 (1985). ISBN 0-387-96229-8 (USA), ISBN 3-540-96229-8 (FR Germany). vol 1, 1985 Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. In: Sanders JA, Verhulst F (eds) Applied mathematical sciences, vol 59. Springer, New York. 10+ 247 pp. Price DM 84.00 (1985). ISBN 0-387-96229-8 (USA), ISBN 3-540-96229-8 (FR Germany). vol 1, 1985
Zurück zum Zitat Stewart I, Tall DO (1983) Complex analysis, the hitchhiker’s guide to the plane. Cambridge University Press, CambridgeCrossRefMATH Stewart I, Tall DO (1983) Complex analysis, the hitchhiker’s guide to the plane. Cambridge University Press, CambridgeCrossRefMATH
Zurück zum Zitat Tomlinson GR, Manson G, Lee GM (1996) A simple criterion for establishing an upper limit to the harmonic excitation level of the Duffing oscillator using the Volterra series. J Sound Vib 190:751–762CrossRefMATHMathSciNet Tomlinson GR, Manson G, Lee GM (1996) A simple criterion for establishing an upper limit to the harmonic excitation level of the Duffing oscillator using the Volterra series. J Sound Vib 190:751–762CrossRefMATHMathSciNet
Zurück zum Zitat Xiao ZL, Jing XJ, Cheng L (2013a) The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J Sound Vib 332(5):1335–1354CrossRef Xiao ZL, Jing XJ, Cheng L (2013a) The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J Sound Vib 332(5):1335–1354CrossRef
Zurück zum Zitat Xiao ZL, Jing XJ, Cheng L (2013b) Parameterized convergence bounds for Volterra series expansion of NARX models. IEEE Trans Signal Process 61(20):5026–5038CrossRefMathSciNet Xiao ZL, Jing XJ, Cheng L (2013b) Parameterized convergence bounds for Volterra series expansion of NARX models. IEEE Trans Signal Process 61(20):5026–5038CrossRefMathSciNet
Zurück zum Zitat Xiao ZL, Jing XJ, Cheng L (2014) Estimation of parametric convergence bounds for Volterra series expansion of nonlinear systems. Mech Syst Signal Process 45(1):28–48CrossRef Xiao ZL, Jing XJ, Cheng L (2014) Estimation of parametric convergence bounds for Volterra series expansion of nonlinear systems. Mech Syst Signal Process 45(1):28–48CrossRef
Metadaten
Titel
Parametric Convergence Bounds of Volterra-Type Nonlinear Systems
verfasst von
Xingjian Jing
Ziqiang Lang
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12391-2_14