Skip to main content

2017 | OriginalPaper | Buchkapitel

Patch-Based Deep Convolutional Neural Network for Corneal Ulcer Area Segmentation

verfasst von : Qichao Sun, Lijie Deng, Jianwei Liu, Haixiang Huang, Jin Yuan, Xiaoying Tang

Erschienen in: Fetal, Infant and Ophthalmic Medical Image Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a novel approach to automatically identify the corneal ulcer areas using fluorescein staining images. The proposed method is based on a deep convolutional neural network that labels each pixel in the corneal image as either ulcer area or non-ulcer area, which is essentially a two-class classification problem. Patch-based approach was employed; for every image pixel, a surrounding patch of size 19 × 19 was used to extract the RGB intensities to be used as features for training and testing. For the architecture of our deep network, there were four convolutional layers followed by three fully connected layers with dropout. The final classification was inferred from the probabilistic output from the network. The proposed approach has been validated on a total of 48 images using 5-fold cross-validation, with high segmentation accuracy established; the proposed method was found to be superior to both a baseline method (active contour) and another representative network method (VGG net). Our automated segmentation method had a mean Dice overlap of 0.86 when compared to the manually delineated gold standard as well as a strong and significant manual-vs-automatic correlation in terms of the ulcer area size (correlation coefficient = 0.9934, p-value = 6.3e-45). To the best of our knowledge, this is one of the first few works that have accurately tackled the corneal ulcer area segmentation challenge using deep neural network techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joyce, P.: Corneal vital staining. Ir. J. Med. Sci. 42, 359–367 (1967)CrossRef Joyce, P.: Corneal vital staining. Ir. J. Med. Sci. 42, 359–367 (1967)CrossRef
2.
Zurück zum Zitat Kumar, A., Thirumalesh, M.: Use of dyes in ophthalmology. J. Clin. Ophthalmol. Res. 1, 55 (2013)CrossRef Kumar, A., Thirumalesh, M.: Use of dyes in ophthalmology. J. Clin. Ophthalmol. Res. 1, 55 (2013)CrossRef
3.
Zurück zum Zitat Kaufman, H.: The diagnosis of corneal herpes simplex infection by fluorescent antibody staining. Arch. Ophthalmol. 64, 382–384 (1960)CrossRef Kaufman, H.: The diagnosis of corneal herpes simplex infection by fluorescent antibody staining. Arch. Ophthalmol. 64, 382–384 (1960)CrossRef
4.
Zurück zum Zitat Schweitzer, N.: A fluorescein colored polygonal pattern in the human cornea. Arch. Ophthalmol. 77, 548 (1967)CrossRef Schweitzer, N.: A fluorescein colored polygonal pattern in the human cornea. Arch. Ophthalmol. 77, 548 (1967)CrossRef
5.
Zurück zum Zitat Peterson, R., Wolffsohn, J.: Objective grading of the anterior eye. Optom. Vis. Sci. 86, 273–278 (2009)CrossRef Peterson, R., Wolffsohn, J.: Objective grading of the anterior eye. Optom. Vis. Sci. 86, 273–278 (2009)CrossRef
6.
Zurück zum Zitat Wolffsohn, J., Purslow, C.: Clinical monitoring of ocular physiology using digital image analysis. Contact Lens Anterior Eye 26, 27–35 (2003)CrossRef Wolffsohn, J., Purslow, C.: Clinical monitoring of ocular physiology using digital image analysis. Contact Lens Anterior Eye 26, 27–35 (2003)CrossRef
7.
Zurück zum Zitat Pritchard, N., Young, G., Coleman, S., Hunt, C.: Subjective and objective measures of corneal staining related to multipurpose care systems. Contact Lens Anterior Eye. 26, 3–9 (2003)CrossRef Pritchard, N., Young, G., Coleman, S., Hunt, C.: Subjective and objective measures of corneal staining related to multipurpose care systems. Contact Lens Anterior Eye. 26, 3–9 (2003)CrossRef
8.
Zurück zum Zitat LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521, 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521, 436–444 (2015)CrossRef
9.
Zurück zum Zitat Srivastava, R., Cheng, J., Wong, D., Liu, J.: Using deep learning for robustness to parapapillary atrophy in optic disc segmentation. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (2015) Srivastava, R., Cheng, J., Wong, D., Liu, J.: Using deep learning for robustness to parapapillary atrophy in optic disc segmentation. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (2015)
10.
Zurück zum Zitat Gulshan, V., Peng, L., Coram, M., Stumpe, M., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P., Mega, J., Webster, D.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402 (2016)CrossRef Gulshan, V., Peng, L., Coram, M., Stumpe, M., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P., Mega, J., Webster, D.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402 (2016)CrossRef
11.
Zurück zum Zitat de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015) de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015)
12.
Zurück zum Zitat Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage (2017) Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage (2017)
13.
Zurück zum Zitat Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef
14.
Zurück zum Zitat Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef
15.
Zurück zum Zitat LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)CrossRef LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)CrossRef
16.
Zurück zum Zitat Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)
17.
Zurück zum Zitat Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATH Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATH
Metadaten
Titel
Patch-Based Deep Convolutional Neural Network for Corneal Ulcer Area Segmentation
verfasst von
Qichao Sun
Lijie Deng
Jianwei Liu
Haixiang Huang
Jin Yuan
Xiaoying Tang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-67561-9_11

Premium Partner