Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 6/2016

01.06.2016 | Original Article

Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography

verfasst von: Marco Boegel, Sonja Gehrisch, Thomas Redel, Christopher Rohkohl, Philip Hoelter, Arnd Doerfler, Andreas Maier, Markus Kowarschik

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions.

Methods

We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow. First the data are reconstructed, and a patient-specific vessel model can be generated in the usual way. For this work, we optimize the inflow waveform based on two parameters, the mean velocity and pulsatility. We use statistical analysis of the measurable velocity distribution in the vessel segment to estimate the mean velocity. An iterative optimization scheme based on CFD and virtual angiography is utilized to estimate the inflow pulsatility. Furthermore, we present methods to automatically determine the heart rate and synchronize the inflow waveform to the patient’s heart beat, based on time–intensity curves extracted from the rotational angiogram. This will result in a patient-individualized inflow velocity curve.

Results

The proposed methods were evaluated on two clinical datasets. Based on the vascular geometries, synthetic rotational angiography data was generated to allow a quantitative validation of our approach against ground truth data. We observed an average error of approximately \(5.7\,\%\) for the mean velocity, \(7.1\,\%\) for the pulsatility. The heart rate was estimated very precisely with an average error of about \(0.8\,\%\), which corresponds to about 6 ms error for the duration of one cardiac cycle. Furthermore, a qualitative comparison of measured time–intensity curves from the real data and patient-specific simulated ones shows an excellent match.

Conclusion

The presented methods have the potential to accurately estimate patient-specific boundary conditions from a single dedicated rotational scan.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bögel M, Hölter P, Redel T, Maier A, Hornegger J, Dörfler A. (2015) A fully-automatic locally adaptive thresholding algorithm for blood vessel segmentation in 3D digital subtraction angiography. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th annual international conference of the IEEE, pp 2006–2009 Bögel M, Hölter P, Redel T, Maier A, Hornegger J, Dörfler A. (2015) A fully-automatic locally adaptive thresholding algorithm for blood vessel segmentation in 3D digital subtraction angiography. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th annual international conference of the IEEE, pp 2006–2009
2.
Zurück zum Zitat Bonnefous O, Pereira V, Ouared R, Brina O, Aerts H, Hermans R, van Nijnatten F, Stawiaski J, Ruijters D (2012) Quantification of arterial flow using digital subtraction angiography. Med Phys 39(10):6264–6275CrossRefPubMed Bonnefous O, Pereira V, Ouared R, Brina O, Aerts H, Hermans R, van Nijnatten F, Stawiaski J, Ruijters D (2012) Quantification of arterial flow using digital subtraction angiography. Med Phys 39(10):6264–6275CrossRefPubMed
3.
Zurück zum Zitat Cebral JR, Radaelli A, Frangi A, Putman CM (2007) Qualitative comparison of intra-aneurysmal flow structures determined from conventional and virtual angiograms. In: Medical imaging, pp 65,111E–65,111E. International Society for Optics and Photonics Cebral JR, Radaelli A, Frangi A, Putman CM (2007) Qualitative comparison of intra-aneurysmal flow structures determined from conventional and virtual angiograms. In: Medical imaging, pp 65,111E–65,111E. International Society for Optics and Photonics
4.
Zurück zum Zitat Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C (2013) 4D digital subtraction angiography: implementation and demonstration of feasibility. Am J Neuroradiol 34(10):1914–1921CrossRefPubMed Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C (2013) 4D digital subtraction angiography: implementation and demonstration of feasibility. Am J Neuroradiol 34(10):1914–1921CrossRefPubMed
5.
Zurück zum Zitat Durant J, Waechter I, Hermans R, Weese J, Aach T (2008) Toward quantitative virtual angiography: evaluation with in vitro studies. In: Biomedical imaging: from nano to macro, 2008. ISBI 2008. 5th IEEE international symposium on, pp 632–635 Durant J, Waechter I, Hermans R, Weese J, Aach T (2008) Toward quantitative virtual angiography: evaluation with in vitro studies. In: Biomedical imaging: from nano to macro, 2008. ISBI 2008. 5th IEEE international symposium on, pp 632–635
6.
Zurück zum Zitat Endres J, Kowarschik M, Redel T, Sharma P, Mihalef V, Hornegger J, Dörfler A (2012) A workflow for patient-individualized virtual angiogram generation based on CFD simulation. Comput Math Methods Med 2012(306765):1–24CrossRef Endres J, Kowarschik M, Redel T, Sharma P, Mihalef V, Hornegger J, Dörfler A (2012) A workflow for patient-individualized virtual angiogram generation based on CFD simulation. Comput Math Methods Med 2012(306765):1–24CrossRef
7.
Zurück zum Zitat Endres J, Redel T, Kowarschik M, Hutter J, Hornegger J, Dörfler A (2012) Virtual angiography using CFD simulations based on patient-specific parameter optimization. In: IEEE (ed.) International symposium on biomedical imaging (ISBI), pp 1200–1203 Endres J, Redel T, Kowarschik M, Hutter J, Hornegger J, Dörfler A (2012) Virtual angiography using CFD simulations based on patient-specific parameter optimization. In: IEEE (ed.) International symposium on biomedical imaging (ISBI), pp 1200–1203
8.
Zurück zum Zitat Endres J, Rohkohl C, Schafer S, Royalty K, Maier A, Kowarschik M, Hornegger J (2015) 4D DSA iterative reconstruction. In: King M, Glick S, Mueller K (eds) Proceedings of the fully3D, pp 276–279 Endres J, Rohkohl C, Schafer S, Royalty K, Maier A, Kowarschik M, Hornegger J (2015) 4D DSA iterative reconstruction. In: King M, Glick S, Mueller K (eds) Proceedings of the fully3D, pp 276–279
9.
Zurück zum Zitat Ford MD, Stuhne GR, Nikolov HN, Habets DF, Lownie SP, Holdsworth DW, Steinman D (2005) Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. Med Imaging, IEEE Trans 24(12):1586–1592CrossRef Ford MD, Stuhne GR, Nikolov HN, Habets DF, Lownie SP, Holdsworth DW, Steinman D (2005) Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. Med Imaging, IEEE Trans 24(12):1586–1592CrossRef
10.
Zurück zum Zitat Gülsün M, Tek H (2008) Robust vessel tree modeling. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI. Springer, Heidelberg, pp 602–611 Gülsün M, Tek H (2008) Robust vessel tree modeling. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI. Springer, Heidelberg, pp 602–611
11.
Zurück zum Zitat Huang T, Wu T, Lin C, Mok G, Guo W (2012) Peritherapeutic quantitative flow analysis of arteriovenous malformation on digital subtraction angiography. J Vasc Surg 56(3):812–815CrossRefPubMed Huang T, Wu T, Lin C, Mok G, Guo W (2012) Peritherapeutic quantitative flow analysis of arteriovenous malformation on digital subtraction angiography. J Vasc Surg 56(3):812–815CrossRefPubMed
12.
Zurück zum Zitat Karmonik C, Klucnik R, Benndorf G (2008) Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics-preliminary experience. Rofo 180(3):209–215CrossRefPubMed Karmonik C, Klucnik R, Benndorf G (2008) Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics-preliminary experience. Rofo 180(3):209–215CrossRefPubMed
13.
Zurück zum Zitat Sun Q, Groth A, Bertram M, Waechter I, Bruijns T, Hermans R, Aach T (2010) Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms. Med Phys 37(9):5054–5065 Sun Q, Groth A, Bertram M, Waechter I, Bruijns T, Hermans R, Aach T (2010) Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms. Med Phys 37(9):5054–5065
14.
Zurück zum Zitat Sun Q, Groth A, Waechter I, Brina O, Weese J, Aach T (2009) Quantitative evaluation of virtual angiography for interventional X-ray acquisitions. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro: [ISBI ’09], IEEE, 2009, Boston, pp 895–898 Sun Q, Groth A, Waechter I, Brina O, Weese J, Aach T (2009) Quantitative evaluation of virtual angiography for interventional X-ray acquisitions. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro: [ISBI ’09], IEEE, 2009, Boston, pp 895–898
15.
Zurück zum Zitat Wächter I, Bredno J, Hermans R, Weese J, Barrat D, Hawkes D (2008) Model-based blood flow quantification from rotational angiography. Med Image Anal 12(5):586–602CrossRef Wächter I, Bredno J, Hermans R, Weese J, Barrat D, Hawkes D (2008) Model-based blood flow quantification from rotational angiography. Med Image Anal 12(5):586–602CrossRef
Metadaten
Titel
Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography
verfasst von
Marco Boegel
Sonja Gehrisch
Thomas Redel
Christopher Rohkohl
Philip Hoelter
Arnd Doerfler
Andreas Maier
Markus Kowarschik
Publikationsdatum
01.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 6/2016
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1367-6

Weitere Artikel der Ausgabe 6/2016

International Journal of Computer Assisted Radiology and Surgery 6/2016 Zur Ausgabe

Premium Partner