Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Patterns of Synchrony in Neuronal Networks: The Role of Synaptic Inputs

verfasst von : Igor Belykh, Martin Hasler

Erschienen in: Nonlinear Dynamics New Directions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the role of network architecture and synaptic inputs in the formation of synchronous clusters in synaptically coupled networks of bursting neurons. Through analysis and numerics, we show that the stability of the completely synchronous state, representing the largest cluster, only depends on the number of synaptic inputs each neuron receives, independent from all other details of the network topology. We also give a simple combinatorial algorithm that finds synchronous clusters from the network topology. We demonstrate that networks with a certain degree of internal symmetries are likely to have cluster decompositions with relatively large clusters, leading potentially to cluster synchronization at the mesoscale network level. We address the asymptotic stability of cluster synchronization in excitatory networks of bursting neurons and derive explicit thresholds for the coupling strength that guarantees stable cluster synchronization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sporns, O.: Brain connectivity. Scholarpedia 2(10), 469–5 (2007) Sporns, O.: Brain connectivity. Scholarpedia 2(10), 469–5 (2007)
2.
Zurück zum Zitat Watts, D.J., Strogatz, S.H.: Collective dynamics of 'small-world` networks. Nature 393, 440–442 (1998)CrossRef Watts, D.J., Strogatz, S.H.: Collective dynamics of 'small-world` networks. Nature 393, 440–442 (1998)CrossRef
3.
Zurück zum Zitat Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef
4.
Zurück zum Zitat Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillations in dissipative systems. Izv. Vuzov. Radiofiz. 29, 795 (1986) Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillations in dissipative systems. Izv. Vuzov. Radiofiz. 29, 795 (1986)
6.
Zurück zum Zitat Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 210–9 (1998)CrossRef Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 210–9 (1998)CrossRef
7.
Zurück zum Zitat Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 05410–1 (2002)CrossRef Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 05410–1 (2002)CrossRef
8.
Zurück zum Zitat Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 01410–1 (2003)CrossRef Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 01410–1 (2003)CrossRef
9.
Zurück zum Zitat Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica (Amsterdam) 195D, 159 (2004) Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica (Amsterdam) 195D, 159 (2004)
10.
Zurück zum Zitat Almendral, J., Leyva, I., Daqing, L., Sendina-Nadal, I., Shlomo, H., Boccaletti, S.: Dynamics of overlapping structures in modular networks. Phys. Rev. E 82, 01611–5 (2010)CrossRef Almendral, J., Leyva, I., Daqing, L., Sendina-Nadal, I., Shlomo, H., Boccaletti, S.: Dynamics of overlapping structures in modular networks. Phys. Rev. E 82, 01611–5 (2010)CrossRef
11.
Zurück zum Zitat Rodriguez-Caso, C., Corominas-Murtra, B., Sole, R.V.: On the basic computational structure of gene regulatory networks. Mol. Biosyst. 5(12), 1617–1629 (2009)CrossRef Rodriguez-Caso, C., Corominas-Murtra, B., Sole, R.V.: On the basic computational structure of gene regulatory networks. Mol. Biosyst. 5(12), 1617–1629 (2009)CrossRef
12.
Zurück zum Zitat Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)CrossRef Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)CrossRef
13.
Zurück zum Zitat Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)CrossRefMathSciNet Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)CrossRefMathSciNet
14.
Zurück zum Zitat Afraimovich, V.S., Bunimovich, L.A.: Dynamical networks: Interplay of topology, interactions and local dynamics. Nonlinearity 20(7), 176–1 (2007)CrossRefMathSciNet Afraimovich, V.S., Bunimovich, L.A.: Dynamical networks: Interplay of topology, interactions and local dynamics. Nonlinearity 20(7), 176–1 (2007)CrossRefMathSciNet
15.
Zurück zum Zitat Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)CrossRefMATHMathSciNet Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Afraimovich, V.S., Yong, T., Muezzinoglu, M.K., Rabinovich, M.I.: Nonlinear dynamics of emotion-cognition interaction: When emotion does not destroy cognition? Bull Math. Biol. 73(2), 266–284 (2011)CrossRefMATHMathSciNet Afraimovich, V.S., Yong, T., Muezzinoglu, M.K., Rabinovich, M.I.: Nonlinear dynamics of emotion-cognition interaction: When emotion does not destroy cognition? Bull Math. Biol. 73(2), 266–284 (2011)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86(5), 1698–1702 (1989). (Bazhenov, M., Stopfer, M., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I., Sejnowski, T.J., and Laurent, G.: Neuron 30, 553 (2001); Mehta, M. R., Lee, A. K., and Wilson, M. A.: Nature 417, 741 (2002))CrossRef Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86(5), 1698–1702 (1989). (Bazhenov, M., Stopfer, M., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I., Sejnowski, T.J., and Laurent, G.: Neuron 30, 553 (2001); Mehta, M. R., Lee, A. K., and Wilson, M. A.: Nature 417, 741 (2002))CrossRef
18.
Zurück zum Zitat Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46(2) 233–253 (1986)CrossRefMATHMathSciNet Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46(2) 233–253 (1986)CrossRefMATHMathSciNet
19.
Zurück zum Zitat Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89(6), 2471–2474 (1994)CrossRef Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89(6), 2471–2474 (1994)CrossRef
20.
Zurück zum Zitat Sherman, A.: Anti-phase, asymmetric and aperiodic oscillations in excitable cells–I. Coupled bursters. Bull. Math. Biol. 56, 811–835 (1994)MATH Sherman, A.: Anti-phase, asymmetric and aperiodic oscillations in excitable cells–I. Coupled bursters. Bull. Math. Biol. 56, 811–835 (1994)MATH
21.
Zurück zum Zitat Terman, D., Wang, D.: Global competition and local cooperation in a network of neural oscillators. Phys. (Amsterdam) 81D, 148–176 (1995)MathSciNet Terman, D., Wang, D.: Global competition and local cooperation in a network of neural oscillators. Phys. (Amsterdam) 81D, 148–176 (1995)MathSciNet
22.
Zurück zum Zitat Rabinovich, M.I., Torres, J.J., Varona, P., Huerta, R., Weidman, P.: Origin of coherent structures in a discrete chaotic medium. Phys. Rev E 60, R1130–R1133 (1999)CrossRef Rabinovich, M.I., Torres, J.J., Varona, P., Huerta, R., Weidman, P.: Origin of coherent structures in a discrete chaotic medium. Phys. Rev E 60, R1130–R1133 (1999)CrossRef
24.
Zurück zum Zitat Rubin, J., Terman, D.: Synchronized bursts and loss of synchrony among heterogeneous conditional oscillators. SIAM J. Appl. Dyn. Sys. 1, 146 (2002) Rubin, J., Terman, D.: Synchronized bursts and loss of synchrony among heterogeneous conditional oscillators. SIAM J. Appl. Dyn. Sys. 1, 146 (2002)
25.
Zurück zum Zitat Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 07410–4 (2004) Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 07410–4 (2004)
26.
Zurück zum Zitat de Vries, G., Sherman, A.: Beyond synchronization: Modulatory and emergent effects of coupling in square-wave bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 243–272. World Scientific Publishing, London (2005)CrossRef de Vries, G., Sherman, A.: Beyond synchronization: Modulatory and emergent effects of coupling in square-wave bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 243–272. World Scientific Publishing, London (2005)CrossRef
27.
Zurück zum Zitat Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 18810–1 (2005)CrossRef Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 18810–1 (2005)CrossRef
28.
Zurück zum Zitat Belykh, I., Shilnikov, A.: When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101(7), 07810–2 (2008)CrossRef Belykh, I., Shilnikov, A.: When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101(7), 07810–2 (2008)CrossRef
29.
Zurück zum Zitat Shilnikov, A., Gordon, R., Belykh, I.: Polyrhythmic synchronization in bursting networking motifs. Chaos 18(3), 03712–0 (2008)CrossRefMathSciNet Shilnikov, A., Gordon, R., Belykh, I.: Polyrhythmic synchronization in bursting networking motifs. Chaos 18(3), 03712–0 (2008)CrossRefMathSciNet
30.
Zurück zum Zitat Jalil, S., Belykh, I., Shilnikov, A.: Fast reciprocal inhibition can synchronize bursting neurons. Phys. Rev. E 81, R04520–1 (2010)CrossRefMathSciNet Jalil, S., Belykh, I., Shilnikov, A.: Fast reciprocal inhibition can synchronize bursting neurons. Phys. Rev. E 81, R04520–1 (2010)CrossRefMathSciNet
31.
Zurück zum Zitat Rinzel, J.: Lecture Notes in Biomathematics, vol. 71, pp. 251–291. Springer, Berlin (1987) Rinzel, J.: Lecture Notes in Biomathematics, vol. 71, pp. 251–291. Springer, Berlin (1987)
32.
Zurück zum Zitat Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418 (1991) Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418 (1991)
33.
Zurück zum Zitat Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57(3), 413–439 (1995)CrossRefMATH Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57(3), 413–439 (1995)CrossRefMATH
34.
Zurück zum Zitat Belykh, V.N., Belykh, I.V., Colding-Joergensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. E 3(3), 205–219 (2000)CrossRef Belykh, V.N., Belykh, I.V., Colding-Joergensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. E 3(3), 205–219 (2000)CrossRef
36.
Zurück zum Zitat Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 04810–1 (2005)CrossRef Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 04810–1 (2005)CrossRef
37.
Zurück zum Zitat Shilnikov, A., Calabrese, R., Cymbalyuk, G.: Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 05621–4 (2005)CrossRefMathSciNet Shilnikov, A., Calabrese, R., Cymbalyuk, G.: Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 05621–4 (2005)CrossRefMathSciNet
38.
Zurück zum Zitat Frohlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74, 03192–2 (2006) Frohlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74, 03192–2 (2006)
39.
Zurück zum Zitat Pogromsky, A.Yu., Nijmeijer, H.: Cooperative oscillatory behavior of mutually coupled dynamical systems. IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 48(2), 15–2 (2001).CrossRefMathSciNet Pogromsky, A.Yu., Nijmeijer, H.: Cooperative oscillatory behavior of mutually coupled dynamical systems. IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 48(2), 15–2 (2001).CrossRefMathSciNet
40.
Zurück zum Zitat Belykh, V., Belykh, I., Hasler, M.: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E 62, 6332–6345 (2000)CrossRefMathSciNet Belykh, V., Belykh, I., Hasler, M.: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E 62, 6332–6345 (2000)CrossRefMathSciNet
41.
Zurück zum Zitat Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13(1), 165–178 (2003)CrossRefMATHMathSciNet Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13(1), 165–178 (2003)CrossRefMATHMathSciNet
42.
Zurück zum Zitat Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys. 2(4), 609–646 (2003)CrossRefMATHMathSciNet Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys. 2(4), 609–646 (2003)CrossRefMATHMathSciNet
43.
Zurück zum Zitat Golubitsky, M., Stewart, I., Torok, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dynam. Sys. 4(1), 78–100 (2005)CrossRefMATHMathSciNet Golubitsky, M., Stewart, I., Torok, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dynam. Sys. 4(1), 78–100 (2005)CrossRefMATHMathSciNet
44.
Zurück zum Zitat Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)CrossRefMATHMathSciNet Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)CrossRefMATHMathSciNet
45.
46.
Zurück zum Zitat Belykh, I., Hasler, M.: Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21(1), 01610–6 (2011)CrossRefMathSciNet Belykh, I., Hasler, M.: Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21(1), 01610–6 (2011)CrossRefMathSciNet
48.
Zurück zum Zitat Hindmarsh, J.L., Rose, M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)CrossRef Hindmarsh, J.L., Rose, M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)CrossRef
49.
Zurück zum Zitat Wang, X.-J.: Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica (Amsterdam) 62D, 263 (1993) Wang, X.-J.: Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica (Amsterdam) 62D, 263 (1993)
50.
Zurück zum Zitat Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: A case study. Int. J. Bifurc. Chaos 18(8) 1 (2008)MathSciNet Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: A case study. Int. J. Bifurc. Chaos 18(8) 1 (2008)MathSciNet
51.
Zurück zum Zitat Storace, M., Linaro, D., de Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18(3), 03312–8 (2008)CrossRefMathSciNet Storace, M., Linaro, D., de Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18(3), 03312–8 (2008)CrossRefMathSciNet
52.
Zurück zum Zitat Bautin, N.N.: Behavior of Dynamical Systems Near the Boundary of Stability. Nauka Publ. House, Moscow (1984)MATH Bautin, N.N.: Behavior of Dynamical Systems Near the Boundary of Stability. Nauka Publ. House, Moscow (1984)MATH
53.
Zurück zum Zitat Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68, 393–407 (1993)CrossRef Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68, 393–407 (1993)CrossRef
54.
Zurück zum Zitat Wang, X.F., Chen, G.: Synchronization in scale free dynamical networks: Robustness and fragility. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 54–62 (2002)CrossRef Wang, X.F., Chen, G.: Synchronization in scale free dynamical networks: Robustness and fragility. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 54–62 (2002)CrossRef
Metadaten
Titel
Patterns of Synchrony in Neuronal Networks: The Role of Synaptic Inputs
verfasst von
Igor Belykh
Martin Hasler
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09864-7_1

Neuer Inhalt