Skip to main content

2020 | OriginalPaper | Buchkapitel

Penetration Reinforcing Method for 3D Concrete Printing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large scale construction 3D Concrete Printing (3DcP) has gained much attention worldwide with the recent developments of many new technologies and proof of concept structures. One inherent limitation in 3DcP is the automatic laying of reinforcement. So far, the methods proposed for integrating vertical reinforcement are rudimentary and involve manual post processes. Majority of 3DcP wall structures overcome this issue by using the printed section as a shell and after hardening involve manual post processes to reinforce the structure. In this paper a new method of reinforcing is introduced termed the Layer Penetration Reinforcing Method (LPRM). This process involves the printing of a predetermined number of layers, then the subsequent penetration of pre-cut reinforcement through the fresh layers. To prove the concept a lab scale wall (300 mm tall) is printed and reinforced with 7 mm deformed steel bar and ×9 mm stainless steel helical bar. The wall is cut into 100 mm × 60 mm × 300 mm beam sections and tested in 3-point bending with the bar sitting a depth of approximately 70 mm to measure the flexural strength. The samples are compared to conventionally reinforced concrete. Results have shown that the printed beams with deformed bar and helical bar increase the flexural strength of the wall by 184% and 142% respectively. Deformed bar proved superior over helical bar in reinforcing a 3DcP section by obtaining a flexural strength 83% that of a conventional reinforced section, compared to 47% for helical bar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanjayan, J.G., Nazari, A., Nematollahi, B.: 3D Concrete Printing Technology: Construction and Building Applications, 1 edn. Butterworth-Heinemann (2019) Sanjayan, J.G., Nazari, A., Nematollahi, B.: 3D Concrete Printing Technology: Construction and Building Applications, 1 edn. Butterworth-Heinemann (2019)
2.
Zurück zum Zitat Buswell, R.A., et al.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)CrossRef Buswell, R.A., et al.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)CrossRef
3.
Zurück zum Zitat Marchment, T., Sanjayan, J.: Mesh reinforcing method for 3D concrete printing. Autom. Constr. 109, 102992 (2020)CrossRef Marchment, T., Sanjayan, J.: Mesh reinforcing method for 3D concrete printing. Autom. Constr. 109, 102992 (2020)CrossRef
4.
Zurück zum Zitat Arunothayan, R., et al.: Development of a 3D-Printable Ultra-High Performance Fiber-Reinforced Concrete for Digital Construction. Preprints (2019) Arunothayan, R., et al.: Development of a 3D-Printable Ultra-High Performance Fiber-Reinforced Concrete for Digital Construction. Preprints (2019)
5.
Zurück zum Zitat Bong, S.H., et al.: Properties of 3D-Printable Ductile Fibre-Reinforced Geopolymer Composite for Digital Construction Applications. Springer, Cham (2020)CrossRef Bong, S.H., et al.: Properties of 3D-Printable Ductile Fibre-Reinforced Geopolymer Composite for Digital Construction Applications. Springer, Cham (2020)CrossRef
6.
Zurück zum Zitat Vantyghem, G., et al.: 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom. Constr. 112, 103084 (2020)CrossRef Vantyghem, G., et al.: 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom. Constr. 112, 103084 (2020)CrossRef
7.
Zurück zum Zitat Kreiger, E., Kreiger, M., Case, M.: Development of the construction processes for reinforced additively constructed concrete. Add. Manuf. 28, 39–49 (2019) Kreiger, E., Kreiger, M., Case, M.: Development of the construction processes for reinforced additively constructed concrete. Add. Manuf. 28, 39–49 (2019)
8.
Zurück zum Zitat Ma, G., et al.: Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater. Lett. 235, 144–147 (2019)CrossRef Ma, G., et al.: Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater. Lett. 235, 144–147 (2019)CrossRef
9.
Zurück zum Zitat Bos, F.P., et al.: 3D Printing Concrete with Reinforcement. Springer, Cham (2018)CrossRef Bos, F.P., et al.: 3D Printing Concrete with Reinforcement. Springer, Cham (2018)CrossRef
10.
Zurück zum Zitat Mechtcherine, V., et al.: 3D-printed steel reinforcement for digital concrete construction – Manufacture, mechanical properties and bond behaviour. Constr. Build. Mater. 179, 125–137 (2018)CrossRef Mechtcherine, V., et al.: 3D-printed steel reinforcement for digital concrete construction – Manufacture, mechanical properties and bond behaviour. Constr. Build. Mater. 179, 125–137 (2018)CrossRef
11.
Zurück zum Zitat Abou Yassin, A., Hamzeh, F., Al Sakka, F.: Agent based modeling to optimize workflow of robotic steel and concrete 3D printers. Autom. Const. 110, 103040 (2020) Abou Yassin, A., Hamzeh, F., Al Sakka, F.: Agent based modeling to optimize workflow of robotic steel and concrete 3D printers. Autom. Const. 110, 103040 (2020)
12.
Zurück zum Zitat Baz, B., Aouad, G., Remond, S.: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements. Constr. Build. Mater. 230, 117002 (2020)CrossRef Baz, B., Aouad, G., Remond, S.: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements. Constr. Build. Mater. 230, 117002 (2020)CrossRef
13.
Zurück zum Zitat Marchment, T., Sanjayan, J.: Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing. Pending Publication (2020) Marchment, T., Sanjayan, J.: Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing. Pending Publication (2020)
14.
Zurück zum Zitat BS EN 196-1:1995, Methods of testing cement - Part 1: Determination of strength (1995) BS EN 196-1:1995, Methods of testing cement - Part 1: Determination of strength (1995)
15.
Zurück zum Zitat Tay, Y.W.D., et al.: Time gap effect on bond strength of 3D-printed concrete. Virtual Phys. Prototyping 14(1), 104–113 (2019)CrossRef Tay, Y.W.D., et al.: Time gap effect on bond strength of 3D-printed concrete. Virtual Phys. Prototyping 14(1), 104–113 (2019)CrossRef
16.
Zurück zum Zitat Wolfs, R.J.M., Bos, F.P., Salet, T.A.M.: Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem. Concr. Res. 119, 132–140 (2019)CrossRef Wolfs, R.J.M., Bos, F.P., Salet, T.A.M.: Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem. Concr. Res. 119, 132–140 (2019)CrossRef
17.
Zurück zum Zitat Nerella, V.N., Hempel, S., Mechtcherine, V.: Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 205, 586–601 (2019)CrossRef Nerella, V.N., Hempel, S., Mechtcherine, V.: Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 205, 586–601 (2019)CrossRef
18.
Zurück zum Zitat Marchment, T., et al.: Chapter 12 - interlayer strength of 3D printed concrete: influencing factors and method of enhancing. In: Sanjayan, J.G., Nazari, A., Nematollahi, B. (eds.) 3D Concrete Printing Technology. Butterworth-Heinemann, pp. 241–264 (2019) Marchment, T., et al.: Chapter 12 - interlayer strength of 3D printed concrete: influencing factors and method of enhancing. In: Sanjayan, J.G., Nazari, A., Nematollahi, B. (eds.) 3D Concrete Printing Technology. Butterworth-Heinemann, pp. 241–264 (2019)
19.
Zurück zum Zitat Sanjayan, J.G., et al.: Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 172, 468–475 (2018)CrossRef Sanjayan, J.G., et al.: Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 172, 468–475 (2018)CrossRef
Metadaten
Titel
Penetration Reinforcing Method for 3D Concrete Printing
verfasst von
Taylor Marchment
Jay Sanjayan
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-49916-7_68

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.