Skip to main content

2020 | OriginalPaper | Buchkapitel

Performance of Surface Modified Pineapple Leaf Fiber and Its Applications

verfasst von : G. Rajeshkumar, S. Ramakrishnan, T. Pugalenthi, P. Ravikumar

Erschienen in: Pineapple Leaf Fibers

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Development of pineapple leaf fiber (PALF)-based polymer composites has gain interests due to sustainable and environmental benefits when compared with synthetic-based non-degradable fibers. However, the hydrophilic PALF has poor interfacial bonding with the thermosetting and thermoplastic polymers which are hydrophobic. Moreover, this hydrophilic nature of PLAF leads to more moisture absorption rate, which results in degradation of overall properties. This issue can be addressed by modifying the surface of the fibers. Therefore, a comprehensive understanding of the effect of fiber surface modification on various properties and adhesion with polymers is a key for improving the performance of the PALF and its composites. In this context, the performance of surface modified PALF and its applications are elaborately discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khalil HSA, Alwani MS, Omar AKM (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fiber. BioResources 1:220–232 Khalil HSA, Alwani MS, Omar AKM (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fiber. BioResources 1:220–232
2.
Zurück zum Zitat Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B 40(7):601–606CrossRef Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B 40(7):601–606CrossRef
3.
Zurück zum Zitat Ariffin A, Yusof Y (2017) Effect of extraction process and surface treatment on the mechanical properties in pineapple leaf fibre. MATEC Web Conf 135:00042CrossRef Ariffin A, Yusof Y (2017) Effect of extraction process and surface treatment on the mechanical properties in pineapple leaf fibre. MATEC Web Conf 135:00042CrossRef
4.
Zurück zum Zitat Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef
5.
Zurück zum Zitat Asim M, Jawaid M, Abdan K et al (2018) Effect of Alkali treatments on physical and mechanical strength of pineapple leaf fibres. IOP Conf Ser Mater Sci Eng 290(1):012030CrossRef Asim M, Jawaid M, Abdan K et al (2018) Effect of Alkali treatments on physical and mechanical strength of pineapple leaf fibres. IOP Conf Ser Mater Sci Eng 290(1):012030CrossRef
6.
Zurück zum Zitat Basu A, Chellamani KP, Kumar PR (2003) Jute and pineapple leaf fibres for the manufacture of technical textiles. Asian Text J 12:94–96 Basu A, Chellamani KP, Kumar PR (2003) Jute and pineapple leaf fibres for the manufacture of technical textiles. Asian Text J 12:94–96
7.
Zurück zum Zitat Bhaduri SK, Sen SK, Dasgupta PC (1983) Structural studies of an acidic polysaccharide isolated from the leaf fibre of pineapple (Ananas comosus MERR). Carbohydr Res 121:211–220CrossRef Bhaduri SK, Sen SK, Dasgupta PC (1983) Structural studies of an acidic polysaccharide isolated from the leaf fibre of pineapple (Ananas comosus MERR). Carbohydr Res 121:211–220CrossRef
8.
Zurück zum Zitat Cherian BM, Leão AL, de Souza SF et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRef Cherian BM, Leão AL, de Souza SF et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRef
9.
Zurück zum Zitat George J, Bhagawan SS, Thomas S (1997) Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites. Compos Interfaces 5(3):201–223CrossRef George J, Bhagawan SS, Thomas S (1997) Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites. Compos Interfaces 5(3):201–223CrossRef
10.
Zurück zum Zitat Hayavadana J, Jacob M, Sampath G (2003) Diversified product of pine apple leaf fibres. Man Made Text India 46:301–305 Hayavadana J, Jacob M, Sampath G (2003) Diversified product of pine apple leaf fibres. Man Made Text India 46:301–305
11.
Zurück zum Zitat Izani MN, Paridah MT, Anwar UMK et al (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos Part B Eng 45(1):1251–1257CrossRef Izani MN, Paridah MT, Anwar UMK et al (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos Part B Eng 45(1):1251–1257CrossRef
12.
Zurück zum Zitat Jain NK, Gupta MK (2018) Hybrid teak/sal wood flour reinforced composites: mechanical, thermal and water absorption properties. Mater Res Exp 5(12):125306CrossRef Jain NK, Gupta MK (2018) Hybrid teak/sal wood flour reinforced composites: mechanical, thermal and water absorption properties. Mater Res Exp 5(12):125306CrossRef
13.
Zurück zum Zitat Jawaid MHPS, Khalil HA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18CrossRef Jawaid MHPS, Khalil HA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18CrossRef
14.
Zurück zum Zitat John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207CrossRef John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207CrossRef
15.
Zurück zum Zitat Jose S, Das R, Mustafa I, Karmakar S et al (2019) Potentiality of Indian pineapple leaf fiber for apparels. J Nat Fib 16(4):536–544CrossRef Jose S, Das R, Mustafa I, Karmakar S et al (2019) Potentiality of Indian pineapple leaf fiber for apparels. J Nat Fib 16(4):536–544CrossRef
16.
Zurück zum Zitat Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fib 13(3):362–373CrossRef Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fib 13(3):362–373CrossRef
17.
Zurück zum Zitat Lopattananon N, Panawarangkul K, Sahakaro K et al (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102(2):1974–1984CrossRef Lopattananon N, Panawarangkul K, Sahakaro K et al (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102(2):1974–1984CrossRef
18.
Zurück zum Zitat Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289(11):955–974CrossRef Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289(11):955–974CrossRef
19.
Zurück zum Zitat Nadirah WW, Jawaid M, Al Masri AA et al (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20(2):404–411CrossRef Nadirah WW, Jawaid M, Al Masri AA et al (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20(2):404–411CrossRef
20.
Zurück zum Zitat Nayan NHM, Rahman WAWA, Majid RA (2014) The effect of mercerization process on the structural and morphological properties of pineapple leaf fiber (PALF) pulp. Malaysian J Fundam Appl Sci 10(1) Nayan NHM, Rahman WAWA, Majid RA (2014) The effect of mercerization process on the structural and morphological properties of pineapple leaf fiber (PALF) pulp. Malaysian J Fundam Appl Sci 10(1)
21.
Zurück zum Zitat Negawo TA, Polat Y, Buyuknalcaci FN et al (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597CrossRef Negawo TA, Polat Y, Buyuknalcaci FN et al (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597CrossRef
22.
Zurück zum Zitat Rajeshkumar G, Hariharan V, Scalici T (2016) Effect of NaOH treatment on properties of Phoenix sp. Fiber. J Nat Fib 13(6):702–713 Rajeshkumar G, Hariharan V, Scalici T (2016) Effect of NaOH treatment on properties of Phoenix sp. Fiber. J Nat Fib 13(6):702–713
23.
Zurück zum Zitat Rajeshkumar G, Hariharan V, Sathishkumar TP (2016) Characterization of Phoenix sp. natural fiber as potential reinforcement of polymer composites. J Ind Text 46(3):667–683CrossRef Rajeshkumar G, Hariharan V, Sathishkumar TP (2016) Characterization of Phoenix sp. natural fiber as potential reinforcement of polymer composites. J Ind Text 46(3):667–683CrossRef
24.
Zurück zum Zitat Rajeshkumar G, Hariharan V, Sathishkumar TP et al (2017) Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites. J Ind Text 47(2):211–232CrossRef Rajeshkumar G, Hariharan V, Sathishkumar TP et al (2017) Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites. J Ind Text 47(2):211–232CrossRef
27.
Zurück zum Zitat Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27CrossRef Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27CrossRef
28.
Zurück zum Zitat Samal RK, Bhuyan BL (1994) Chemical modification of lignocellulosic fibers I. Functionality changes and graftcopolymerization of acrylonitrile onto pineapple leaf fibers; their characterization and behavior. J Appl Polym Sci 52(12): 1675–1685 Samal RK, Bhuyan BL (1994) Chemical modification of lignocellulosic fibers I. Functionality changes and graftcopolymerization of acrylonitrile onto pineapple leaf fibers; their characterization and behavior. J Appl Polym Sci 52(12): 1675–1685
29.
Zurück zum Zitat Sapuan SM, Mohamed AR, Siregar JP et al (2011) Pineapple leaf fibers and PALF-Reinforced polymer composites. In Cellulose fibers: bio-and nano-polymer composites, Springer, 325–343 Sapuan SM, Mohamed AR, Siregar JP et al (2011) Pineapple leaf fibers and PALF-Reinforced polymer composites. In Cellulose fibers: bio-and nano-polymer composites, Springer, 325–343
30.
Zurück zum Zitat Senthilkumar K, Rajini N, Saba N et al (2019) Effect of Alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. J Polym Environ 27(6):1191–1201CrossRef Senthilkumar K, Rajini N, Saba N et al (2019) Effect of Alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. J Polym Environ 27(6):1191–1201CrossRef
31.
Zurück zum Zitat Senthilkumar K, Saba N, Chandrasekar M et al (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater 195:423–431CrossRef Senthilkumar K, Saba N, Chandrasekar M et al (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater 195:423–431CrossRef
32.
Zurück zum Zitat Sinha MK (1982) A review of processing technology for the utilisation of agro-waste fibres. Agric Wastes 4(6):461–475CrossRef Sinha MK (1982) A review of processing technology for the utilisation of agro-waste fibres. Agric Wastes 4(6):461–475CrossRef
33.
Zurück zum Zitat Siregar JP, Sapuan SM, Rahman MZA et al (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Sapuan SM (ed) Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, pp 19–24 Siregar JP, Sapuan SM, Rahman MZA et al (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Sapuan SM (ed) Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, pp 19–24
34.
Zurück zum Zitat Sørensen BF, Lilholt H (2016) Fiber pull-out test and single fiber fragmentation test-analysis and modelling. IOP Conf Series Mater Sci Eng 139(1):012009CrossRef Sørensen BF, Lilholt H (2016) Fiber pull-out test and single fiber fragmentation test-analysis and modelling. IOP Conf Series Mater Sci Eng 139(1):012009CrossRef
35.
Zurück zum Zitat Suwanruji P, Tuechart T, Smitthipong W et al (2017) Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. J Thermoplast Compos Mater 30(10):1344–1360CrossRef Suwanruji P, Tuechart T, Smitthipong W et al (2017) Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. J Thermoplast Compos Mater 30(10):1344–1360CrossRef
36.
Zurück zum Zitat Velusamy K, Navaneethakrishnan P, Rajeshkumar G, Sathishkumar TP (2019) The influence of fiber content and length on mechanical and water absorption properties of Calotropis Gigantea fiber reinforced epoxy composites. J Ind Text 48(8):1274–1290CrossRef Velusamy K, Navaneethakrishnan P, Rajeshkumar G, Sathishkumar TP (2019) The influence of fiber content and length on mechanical and water absorption properties of Calotropis Gigantea fiber reinforced epoxy composites. J Ind Text 48(8):1274–1290CrossRef
37.
Zurück zum Zitat Yahya B, Asia S, Yusof Y (2013) Comprehensive review on the utilization of PALF. Adv Mater Res 701:430–434CrossRef Yahya B, Asia S, Yusof Y (2013) Comprehensive review on the utilization of PALF. Adv Mater Res 701:430–434CrossRef
38.
Zurück zum Zitat Zin MH, Abdan K, Mazlan N et al (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Series Mater Sci Eng 368(1):012035CrossRef Zin MH, Abdan K, Mazlan N et al (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Series Mater Sci Eng 368(1):012035CrossRef
Metadaten
Titel
Performance of Surface Modified Pineapple Leaf Fiber and Its Applications
verfasst von
G. Rajeshkumar
S. Ramakrishnan
T. Pugalenthi
P. Ravikumar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1416-6_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.