Skip to main content
Erschienen in: Experiments in Fluids 1/2013

01.01.2013 | Research Article

Performance recovery of a thick turbulent airfoil using a distributed closed-loop flow control system

verfasst von: Victor Troshin, Avraham Seifert

Erschienen in: Experiments in Fluids | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes an experimental study aimed at controlling the performance of a thick airfoil, typical to the root section of a wind turbine blade. The main purpose is recovering decreased performance due to degraded surface quality, leading to decreased lift and increased drag. Since wind turbines are designed to operate for decades, the blades’ surface quality degradation due to environmental effects is unavoidable. This process promotes early transition to turbulent flow, leading to premature boundary layer separation in the post-transitional regime. In addition, non-uniform and unsteady wind speeds cause dynamic loads on the blade and on the overall turbine structure. Controlling unsteady and non-uniform loads by changing the blades’ (or its cross-section) performance will allow building larger, lighter and more durable to aging wind turbines. Active flow control (AFC) is a possible remedy to boundary layer separation, including rough surface effects. Currently, three arrays of synthetic jet actuators are controlled based on state estimation provided by feedback from hot-film and pressure sensors. The unsteady pressure sensors’ data are used to estimate the lift while the unsteady and un-calibrated hot-films data are used to determine the flow separation location and define the relative magnitude of actuation imparted by each of the three actuator rows. The aerodynamic results demonstrate that the “clean” turbine blade performance, with lift-based controller, is recovered by the closed-loop active flow control system at Reynolds numbers around half a million and excitation at Strouhal numbers larger than 10. The total closed-loop AFC system energy efficiency was measured and shown to increase by up to 60 % compared to the airfoil with degraded surface quality. The current results indicate the potential of a closed-loop AFC system to provide significant increase in the net energy harvesting capability of a wind turbine blade with degraded surface quality over a wide range of incidence angles and Reynolds numbers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Althaus D (1996) “Niedriggeschwindigkeitsprofile,” Friedr. Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig/Weisbaden, Germany, pp 591 Althaus D (1996) “Niedriggeschwindigkeitsprofile,” Friedr. Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig/Weisbaden, Germany, pp 591
Zurück zum Zitat Berg D, Johnson SJ, Dam CP (2008) “Active Load Control Techniques for Wind Turbines”, Sandia Report, SAND2008-4809, July 2008 Berg D, Johnson SJ, Dam CP (2008) “Active Load Control Techniques for Wind Turbines”, Sandia Report, SAND2008-4809, July 2008
Zurück zum Zitat Cattafesta LN III, Garg S, Shukla D (2001) Development of piezoelectric actuators for active flow control. AIAA J 39(8):1562–1568 Cattafesta LN III, Garg S, Shukla D (2001) Development of piezoelectric actuators for active flow control. AIAA J 39(8):1562–1568
Zurück zum Zitat Cutler AD, Beck BT, Wilkes JA, Drummond PJ, Alderfer WD, Paul M, Danehy MP (2005) Development of a pulsed combustion actuator for high-speed flow control. AIAA paper 2005–1084 Cutler AD, Beck BT, Wilkes JA, Drummond PJ, Alderfer WD, Paul M, Danehy MP (2005) Development of a pulsed combustion actuator for high-speed flow control. AIAA paper 2005–1084
Zurück zum Zitat Gilarranz JL, Traub LW, Rediniotis OK (2005) A new class of synthetic jet actuators—part I: design, fabrication and bench top characterization. J Fluids Eng 127:367–376CrossRef Gilarranz JL, Traub LW, Rediniotis OK (2005) A new class of synthetic jet actuators—part I: design, fabrication and bench top characterization. J Fluids Eng 127:367–376CrossRef
Zurück zum Zitat Glazer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529CrossRef Glazer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529CrossRef
Zurück zum Zitat Johnson SJ, Baker JP, Dam CP, Berg D (2010) An overview of active load control techniques for wind turbines with an emphasis on microtabs. Wind Energy 13:239–253CrossRef Johnson SJ, Baker JP, Dam CP, Berg D (2010) An overview of active load control techniques for wind turbines with an emphasis on microtabs. Wind Energy 13:239–253CrossRef
Zurück zum Zitat Kumar V, Alvi FS (2006) Use of high-speed microjets for active separation control. AIAA J 44(2):273–281 Kumar V, Alvi FS (2006) Use of high-speed microjets for active separation control. AIAA J 44(2):273–281
Zurück zum Zitat Kumar V, Alvi FS (2009) Toward understanding and optimizing separation control using microjets. AIAA J 47(11):2544–2557 Kumar V, Alvi FS (2009) Toward understanding and optimizing separation control using microjets. AIAA J 47(11):2544–2557
Zurück zum Zitat Rapoport D, Fono I, Cohen K, Seifert A (2003) Closed-loop vectoring control of a turbulent jet using periodic excitation. J Propuls Power 19:646–654CrossRef Rapoport D, Fono I, Cohen K, Seifert A (2003) Closed-loop vectoring control of a turbulent jet using periodic excitation. J Propuls Power 19:646–654CrossRef
Zurück zum Zitat Seifert A (2007) Closed-loop active flow control systems: actuators. In: King R (ed) Active flow control, NNFM 95. Springer, Berlin, pp 85–102CrossRef Seifert A (2007) Closed-loop active flow control systems: actuators. In: King R (ed) Active flow control, NNFM 95. Springer, Berlin, pp 85–102CrossRef
Zurück zum Zitat Seifert A, Pack LM (2006) Identification and control of turbulent boundary layer separation. In: Meier GEA, Sreenivasan KR, Heinemann HJ (eds) 100 years of boundary layer research and L. Prandtl centennial lecture. Springer, Berlin, pp 199–208 Seifert A, Pack LM (2006) Identification and control of turbulent boundary layer separation. In: Meier GEA, Sreenivasan KR, Heinemann HJ (eds) 100 years of boundary layer research and L. Prandtl centennial lecture. Springer, Berlin, pp 199–208
Zurück zum Zitat Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircr 33(4):691–698CrossRef Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircr 33(4):691–698CrossRef
Zurück zum Zitat Seifert A, Eilahu S, Greenblatt D, Wignanski I (1998) Use of piezoelectic actuators for airfoil separation control. AIAA J 36(8) Seifert A, Eilahu S, Greenblatt D, Wignanski I (1998) Use of piezoelectic actuators for airfoil separation control. AIAA J 36(8)
Zurück zum Zitat Simpson RL, Ghodbane M, McGrath BE (1987) Surface pressure fluctuations in a separating turbulent boundary layer. J Fluid Mech 177:167–186CrossRef Simpson RL, Ghodbane M, McGrath BE (1987) Surface pressure fluctuations in a separating turbulent boundary layer. J Fluid Mech 177:167–186CrossRef
Zurück zum Zitat Stalnov O, Kribus A, Seifert A (2010) Evaluation of active flow control applied to wind turbine blade section. J Renew Sustain Energy 2(6):063101 Stalnov O, Kribus A, Seifert A (2010) Evaluation of active flow control applied to wind turbine blade section. J Renew Sustain Energy 2(6):063101
Zurück zum Zitat Timor I, Ben-Hamou E, Guy Y, Seifert A (2007) Maneuvering aspects and 3D effects of active airfoil flow control. Flow Turbul Combust 78:429–443CrossRef Timor I, Ben-Hamou E, Guy Y, Seifert A (2007) Maneuvering aspects and 3D effects of active airfoil flow control. Flow Turbul Combust 78:429–443CrossRef
Metadaten
Titel
Performance recovery of a thick turbulent airfoil using a distributed closed-loop flow control system
verfasst von
Victor Troshin
Avraham Seifert
Publikationsdatum
01.01.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1443-9

Weitere Artikel der Ausgabe 1/2013

Experiments in Fluids 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.