Skip to main content

2019 | OriginalPaper | Buchkapitel

41. Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage

verfasst von : Ziguang Chen, Sina Niazi, Guanfeng Zhang, Florin Bobaru

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we present two peridynamic models for composite materials: a locally homogenized model (FH-PD model, based on results reported in Cheng et al. (Compos Struct 133: 529–546, 2015)) and an intermediately homogenized model (IH-PD model). We use these models to simulate fracture in functionally graded materials (FGMs) and in porous elastic materials. We analyze dynamic fracture, by eccentric impact, of a functionally graded plate with monotonically varying volume fraction of reinforcements. We study the influence of material gradients, elastic waves, and of contact time and magnitude of impact loading on the crack growth from a pre-notch in terms of crack path geometry and crack propagation speed. The results from FH-PD and IH-PD models show the same cracking behavior and final crack patterns. The simulations agree very well, through full failure, with experiments. We discuss advantages offered by the peridynamic models in dynamic fracture of FGMs compared with, for example, FEM-based models. The models lead to a better understanding of how cracks propagate in FGMs and of the factors that control crack path and its velocity in these materials. The IH-PD model has important advantages when compared with the FH-PD model when applied to composite materials with phases of disparate mechanical properties. An application to fracture of porous and elastic materials (following Chen et al. (Peridynamic model for damage and fracture in porous materials, 2017)) shows the major effect local heterogeneities have on fracture behavior and the importance of intermediate homogenization as a modeling approach of crack initiation and growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat J. Abanto-Bueno, J. Lambros, An experimental study of mixed model crack initiation and growth in functionally graded materials. Exp. Mech. 46, 179–186 (2006)CrossRef J. Abanto-Bueno, J. Lambros, An experimental study of mixed model crack initiation and growth in functionally graded materials. Exp. Mech. 46, 179–186 (2006)CrossRef
Zurück zum Zitat G. Anlas, M.H. Santare, J. Lambros, Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 104, 131–143 (2000)CrossRef G. Anlas, M.H. Santare, J. Lambros, Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 104, 131–143 (2000)CrossRef
Zurück zum Zitat H. Bayesteh, S. Mohammadi, XFEM fracture analysis of orthotropic functionally graded materials. Compos. Part B Eng. 44, 8–25 (2013)CrossRef H. Bayesteh, S. Mohammadi, XFEM fracture analysis of orthotropic functionally graded materials. Compos. Part B Eng. 44, 8–25 (2013)CrossRef
Zurück zum Zitat F. Bobaru, Designing optimal volume fractions for functionally graded materials with temperature-dependent material properties. J. Appl. Mech. 74(5), 861–874 (2007)CrossRef F. Bobaru, Designing optimal volume fractions for functionally graded materials with temperature-dependent material properties. J. Appl. Mech. 74(5), 861–874 (2007)CrossRef
Zurück zum Zitat F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)CrossRef F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)CrossRef
Zurück zum Zitat F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J.F. Xu, Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77, 852–877 (2009)CrossRef F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J.F. Xu, Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77, 852–877 (2009)CrossRef
Zurück zum Zitat Z. Chen, F. Bobaru, Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput. Phys. Commun. 197, 51–60 (2015)CrossRef Z. Chen, F. Bobaru, Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput. Phys. Commun. 197, 51–60 (2015)CrossRef
Zurück zum Zitat Z. Chen, D. Bakenhus, F. Bobaru, A constructive peridynamic kernel for elasticity. Comput. Methods Appl. Mech. Eng. 311, 356–373 (2016)MathSciNetCrossRef Z. Chen, D. Bakenhus, F. Bobaru, A constructive peridynamic kernel for elasticity. Comput. Methods Appl. Mech. Eng. 311, 356–373 (2016)MathSciNetCrossRef
Zurück zum Zitat Z. Chen, S. Niazi, F. Bobaru, Peridynamic model for damage and fracture in porous materials (2017, in preparation) Z. Chen, S. Niazi, F. Bobaru, Peridynamic model for damage and fracture in porous materials (2017, in preparation)
Zurück zum Zitat Z.Q. Cheng, Z. Zhong, Analysis of a moving crack in a functionally graded strip between two homogeneous layers. Int. J. Mech. Sci. 49, 1038–1046 (2007)CrossRef Z.Q. Cheng, Z. Zhong, Analysis of a moving crack in a functionally graded strip between two homogeneous layers. Int. J. Mech. Sci. 49, 1038–1046 (2007)CrossRef
Zurück zum Zitat Z.Q. Cheng, D.Y. Gao, Z. Zhong, Crack propagating in functionally graded coating with arbitrarily distributed material properties bonded homogeneous substrate. Acta Mech. Solida Sin. 23, 437–446 (2010)CrossRef Z.Q. Cheng, D.Y. Gao, Z. Zhong, Crack propagating in functionally graded coating with arbitrarily distributed material properties bonded homogeneous substrate. Acta Mech. Solida Sin. 23, 437–446 (2010)CrossRef
Zurück zum Zitat Z. Cheng, G. Zhang, Y. Wang, F. Bobaru, A peridynamic model for dynamic fracture in functionally graded materials. Compos. Struct. 133, 529–546 (2015)CrossRef Z. Cheng, G. Zhang, Y. Wang, F. Bobaru, A peridynamic model for dynamic fracture in functionally graded materials. Compos. Struct. 133, 529–546 (2015)CrossRef
Zurück zum Zitat F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50, 609–614 (1983)CrossRef F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50, 609–614 (1983)CrossRef
Zurück zum Zitat J.W. Eischen, Fracture of nonhomogeneous material. Int. J. Fract. 34, 3–22 (1987) J.W. Eischen, Fracture of nonhomogeneous material. Int. J. Fract. 34, 3–22 (1987)
Zurück zum Zitat F. Erdogan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear. Trans. ASME J. Basic Eng. 84D(4), 519–525 (1963)CrossRef F. Erdogan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear. Trans. ASME J. Basic Eng. 84D(4), 519–525 (1963)CrossRef
Zurück zum Zitat L.C. Guo, W. LZ, T. Zeng, L. Ma, Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface – part II: transient problem. Int. J. Fract. 127, 39–59 (2004)CrossRef L.C. Guo, W. LZ, T. Zeng, L. Ma, Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface – part II: transient problem. Int. J. Fract. 127, 39–59 (2004)CrossRef
Zurück zum Zitat Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1–2), 229–244 (2010)CrossRef Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1–2), 229–244 (2010)CrossRef
Zurück zum Zitat Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef
Zurück zum Zitat W. Hu, Y.D. Ha, F. Bobaru, Numerical integration in peridynamics, in Technical report, University of Nebraska–Lincoln, Lincoln, 2010 W. Hu, Y.D. Ha, F. Bobaru, Numerical integration in peridynamics, in Technical report, University of Nebraska–Lincoln, Lincoln, 2010
Zurück zum Zitat W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217–220, 247–261 (2012)MathSciNetCrossRef W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217–220, 247–261 (2012)MathSciNetCrossRef
Zurück zum Zitat W. Hu, Y. Wang, J. Yu, C.F. Yen, F. Bobaru, Impact damage on a thin glass with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)CrossRef W. Hu, Y. Wang, J. Yu, C.F. Yen, F. Bobaru, Impact damage on a thin glass with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)CrossRef
Zurück zum Zitat S. Itou, Dynamic stress intensity factors for two parallel interface cracks between a nonhomogeneous bonding layer and two dissimilar elastic half-planes subject to an impact load. Int. J. Solids Struct. 47, 2155–2163 (2010)CrossRef S. Itou, Dynamic stress intensity factors for two parallel interface cracks between a nonhomogeneous bonding layer and two dissimilar elastic half-planes subject to an impact load. Int. J. Solids Struct. 47, 2155–2163 (2010)CrossRef
Zurück zum Zitat N. Jain, A. Shukla, Mixed mode dynamic fracture in particulate reinforced functionally graded materials. Exp. Mech. 46(2), 137–154 (2006)CrossRef N. Jain, A. Shukla, Mixed mode dynamic fracture in particulate reinforced functionally graded materials. Exp. Mech. 46(2), 137–154 (2006)CrossRef
Zurück zum Zitat Z.H. Jin, R.C. Batra, Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996)CrossRef Z.H. Jin, R.C. Batra, Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996)CrossRef
Zurück zum Zitat X. Jin, W. LZ, L.C. Guo, Y. HJ, Y.G. Sun, Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials. Eng. Fract. Mech. 76, 1800–1810 (2009)CrossRef X. Jin, W. LZ, L.C. Guo, Y. HJ, Y.G. Sun, Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials. Eng. Fract. Mech. 76, 1800–1810 (2009)CrossRef
Zurück zum Zitat M. Kashtalyan, M. Menshykova, Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading. Compos. Struct. 89(2), 167–176 (2009)CrossRef M. Kashtalyan, M. Menshykova, Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading. Compos. Struct. 89(2), 167–176 (2009)CrossRef
Zurück zum Zitat A. Kidane, V.B. Chalivendra, A. Shulka, R. Chona, Mixed-mode dynamic crack propagation in graded materials under thermo-mechanical loading. Eng. Fract. Mech. 77, 2864–2880 (2010)CrossRef A. Kidane, V.B. Chalivendra, A. Shulka, R. Chona, Mixed-mode dynamic crack propagation in graded materials under thermo-mechanical loading. Eng. Fract. Mech. 77, 2864–2880 (2010)CrossRef
Zurück zum Zitat J.H. Kim, G.H. Paulino, Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading. Int. J. Mech. Mater. Des. 1, 63–94 (2004)CrossRef J.H. Kim, G.H. Paulino, Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading. Int. J. Mech. Mater. Des. 1, 63–94 (2004)CrossRef
Zurück zum Zitat M.S. Kirugulige, H.V. Tippur, Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp. Mech. 46(2), 269–281 (2006)CrossRef M.S. Kirugulige, H.V. Tippur, Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp. Mech. 46(2), 269–281 (2006)CrossRef
Zurück zum Zitat M.S. Kirugulige, H.V. Tippur, Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurement and finite element simulations. J. Appl. Mech. 75(5), 051102 (2008)CrossRef M.S. Kirugulige, H.V. Tippur, Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurement and finite element simulations. J. Appl. Mech. 75(5), 051102 (2008)CrossRef
Zurück zum Zitat K.H. Lee, Analysis of a transiently propagating crack in functionally graded materials under mode I and II. Int. J. Eng. Sci. 47, 852–865 (2009)MathSciNetCrossRef K.H. Lee, Analysis of a transiently propagating crack in functionally graded materials under mode I and II. Int. J. Eng. Sci. 47, 852–865 (2009)MathSciNetCrossRef
Zurück zum Zitat Q. Lin, A. Fakhimi, M. Haggerty, J.F. Labuz, Initiation of tensile and mixed-mode fracture in sandstone. Int. J. Rock Mech. Min. Sci. 46, 489–497 (2009)CrossRef Q. Lin, A. Fakhimi, M. Haggerty, J.F. Labuz, Initiation of tensile and mixed-mode fracture in sandstone. Int. J. Rock Mech. Min. Sci. 46, 489–497 (2009)CrossRef
Zurück zum Zitat L. Ma, L.Z. Wu, L.C. Guo, Z.G. Zhou, On the moving Griffith crack in a non-homogeneous orthotropic medium. Eur. J. Mech. A. Solids 24, 393–405 (2005)CrossRef L. Ma, L.Z. Wu, L.C. Guo, Z.G. Zhou, On the moving Griffith crack in a non-homogeneous orthotropic medium. Eur. J. Mech. A. Solids 24, 393–405 (2005)CrossRef
Zurück zum Zitat P.R. Marur, H.V. Tippur, Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids Struct. 37, 5353–5370 (2000)CrossRef P.R. Marur, H.V. Tippur, Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids Struct. 37, 5353–5370 (2000)CrossRef
Zurück zum Zitat M.S. Matbuly, Multiple crack propagation along the interface of a nonhomogeneous composite subjected to anti-plane shear loading. Meccanica 44, 547–554 (2009)MathSciNetCrossRef M.S. Matbuly, Multiple crack propagation along the interface of a nonhomogeneous composite subjected to anti-plane shear loading. Meccanica 44, 547–554 (2009)MathSciNetCrossRef
Zurück zum Zitat C.E. Rousseau, H.V. Tippur, Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis. Mech. Mater. 37, 403–421 (2001)CrossRef C.E. Rousseau, H.V. Tippur, Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis. Mech. Mater. 37, 403–421 (2001)CrossRef
Zurück zum Zitat J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, in Technical report, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1994 J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, in Technical report, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1994
Zurück zum Zitat S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef
Zurück zum Zitat S.A. Silling, Origin and effects of nonlocality in a composite. J. Mech. Mater. Struct. 9, 245–258 (2014)CrossRef S.A. Silling, Origin and effects of nonlocality in a composite. J. Mech. Mater. Struct. 9, 245–258 (2014)CrossRef
Zurück zum Zitat S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef
Zurück zum Zitat S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef
Zurück zum Zitat S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRef S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRef
Zurück zum Zitat J. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)CrossRef J. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)CrossRef
Zurück zum Zitat H.T. Thai, S.E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)CrossRef H.T. Thai, S.E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)CrossRef
Zurück zum Zitat Z.H. Wang, L.C. Guo, L. Zhang, A general modeling method for functionally graded materials with an arbitrarily oriented crack. Philos. Mag. 94, 764–791 (2014)CrossRef Z.H. Wang, L.C. Guo, L. Zhang, A general modeling method for functionally graded materials with an arbitrarily oriented crack. Philos. Mag. 94, 764–791 (2014)CrossRef
Zurück zum Zitat C.H. Xia, L. Ma, Dynamic behavior of a finite crack in functionally graded materials subjected to plane incident time-harmonic stress wave. Compos. Struct. 77(1), 10–17 (2007)CrossRef C.H. Xia, L. Ma, Dynamic behavior of a finite crack in functionally graded materials subjected to plane incident time-harmonic stress wave. Compos. Struct. 77(1), 10–17 (2007)CrossRef
Zurück zum Zitat G. Zhang, F. Bobaru, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 196, 59–98 (2015)CrossRef G. Zhang, F. Bobaru, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 196, 59–98 (2015)CrossRef
Zurück zum Zitat Z. Zhang, G.H. Paulino, Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int. J. Plast. 21, 1195–1254 (2005)CrossRef Z. Zhang, G.H. Paulino, Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int. J. Plast. 21, 1195–1254 (2005)CrossRef
Zurück zum Zitat G. Zhang, Q. Le, A. Loghin, A. Subramaniyan, F. Bobaru, Validation of a peridynamic model for fatigue cracking. Eng. Fract. Mech. 162, 76–94 (2016)CrossRef G. Zhang, Q. Le, A. Loghin, A. Subramaniyan, F. Bobaru, Validation of a peridynamic model for fatigue cracking. Eng. Fract. Mech. 162, 76–94 (2016)CrossRef
Metadaten
Titel
Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage
verfasst von
Ziguang Chen
Sina Niazi
Guanfeng Zhang
Florin Bobaru
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_36

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.