Skip to main content

2014 | OriginalPaper | Buchkapitel

Periplasmic Binding Proteins in Biosensing Applications

verfasst von : Felix S. Grünewald

Erschienen in: Advances in Chemical Bioanalysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Periplasmic binding proteins (PBPs) of gram-negative bacteria have been widely used as recognition elements for the development of biosensors for small molecule analytes owing to their intrinsically high selectivity and affinity towards their cognate ligands. Analyte binding is accompanied by a large hinge motion that can readily be transduced to a detectable signal. While fundamental work demonstrating the versatility of PBPs as scaffolds for biosensors dates back to the 1990s, recent years have seen more subtle improvements in detection strategies. Measurement of cellular metabolites with PBP-based biosensors has allowed significant contributions to basic research, and a first functional sensor for continuous blood glucose monitoring with glucose-binding protein as biological recognition element was tested in preclinical trials. In this chapter, strategies and applications of biosensors using PBPs as specifiers will be reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tam R, Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346 Tam R, Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346
2.
Zurück zum Zitat Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504 Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504
3.
Zurück zum Zitat Felder CB, Graul RC, Lee AY et al (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1:E2 Felder CB, Graul RC, Lee AY et al (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1:E2
4.
Zurück zum Zitat Wilkinson AJ, Verschueren KHG (2003) Crystal structures of periplasmic solute-binding proteins in ABC transport complexes illuminate their function. In: Holland IB, Susan PCC, Karl K, Higgins CF (eds) ABC proteins. Academic, London Wilkinson AJ, Verschueren KHG (2003) Crystal structures of periplasmic solute-binding proteins in ABC transport complexes illuminate their function. In: Holland IB, Susan PCC, Karl K, Higgins CF (eds) ABC proteins. Academic, London
5.
Zurück zum Zitat Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25 Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25
6.
Zurück zum Zitat Marvin JS, Hellinga HW (2001) Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Biol 8:795–798 Marvin JS, Hellinga HW (2001) Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Biol 8:795–798
7.
Zurück zum Zitat Marvin JS, Hellinga HW (2001) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci U S A 98:4955–4960 Marvin JS, Hellinga HW (2001) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci U S A 98:4955–4960
8.
Zurück zum Zitat Allert M, Rizk SS, Looger LL et al (2004) Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proc Natl Acad Sci U S A 101:7907–7912 Allert M, Rizk SS, Looger LL et al (2004) Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proc Natl Acad Sci U S A 101:7907–7912
9.
Zurück zum Zitat Schreier B, Stumpp C, Wiesner S et al (2009) Computational design of ligand binding is not a solved problem. Proc Natl Acad Sci U S A 106:18491–18496 Schreier B, Stumpp C, Wiesner S et al (2009) Computational design of ligand binding is not a solved problem. Proc Natl Acad Sci U S A 106:18491–18496
10.
Zurück zum Zitat Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082 Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082
11.
Zurück zum Zitat Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242 Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242
12.
Zurück zum Zitat Davidson AL, Dassa E, Orelle C et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364 Davidson AL, Dassa E, Orelle C et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364
13.
Zurück zum Zitat Deuschle K, Fehr M, Hilpert M et al (2005) Genetically encoded sensors for metabolites. Cytometry A 64A:3–9 Deuschle K, Fehr M, Hilpert M et al (2005) Genetically encoded sensors for metabolites. Cytometry A 64A:3–9
14.
Zurück zum Zitat Quiocho FA, Higgins CF (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria [and discussion]. Philos Trans R Soc Lond B Biol Sci 326:341–352 Quiocho FA, Higgins CF (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria [and discussion]. Philos Trans R Soc Lond B Biol Sci 326:341–352
15.
Zurück zum Zitat Heddle J, Scott DJ, Unzai S et al (2003) Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem 278:50322–50329 Heddle J, Scott DJ, Unzai S et al (2003) Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem 278:50322–50329
16.
Zurück zum Zitat Vyas NK, Vyas MN, Quiocho FA (1987) A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature (Lond) 327:635–638 Vyas NK, Vyas MN, Quiocho FA (1987) A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature (Lond) 327:635–638
17.
Zurück zum Zitat Stepanenko OV, Povarova OI, Stepanenko OV et al (2010) Structure and stability of D-galactose/D-glucose-binding protein. The role of D-glucose binding and Ca ion depletion. Spectroscopy 24:355–359 Stepanenko OV, Povarova OI, Stepanenko OV et al (2010) Structure and stability of D-galactose/D-glucose-binding protein. The role of D-glucose binding and Ca ion depletion. Spectroscopy 24:355–359
18.
Zurück zum Zitat Schrödinger, LLC (2010) The PyMOL molecular graphics system, Version 1.3. Schrödinger, LLC (2010) The PyMOL molecular graphics system, Version 1.3.
19.
Zurück zum Zitat Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci 16:1032–1041 Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci 16:1032–1041
20.
Zurück zum Zitat Duan X, Quiocho FA (2001) Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 41:706–712 Duan X, Quiocho FA (2001) Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 41:706–712
21.
Zurück zum Zitat Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure (London) 5:997–1015 Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure (London) 5:997–1015
22.
Zurück zum Zitat Raines DJ, Moroz OV, Wilson KS et al (2013) Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angew Chem 52:4595–4598 Raines DJ, Moroz OV, Wilson KS et al (2013) Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angew Chem 52:4595–4598
23.
Zurück zum Zitat Mao B, Pear MR, McCammon JA et al (1982) Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J Biol Chem 257:1131–1133 Mao B, Pear MR, McCammon JA et al (1982) Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J Biol Chem 257:1131–1133
24.
Zurück zum Zitat Sack JS, Saper MA, Quiocho FA (1989) Periplasmic binding protein structure and function: refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol 206:171–191 Sack JS, Saper MA, Quiocho FA (1989) Periplasmic binding protein structure and function: refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol 206:171–191
25.
Zurück zum Zitat Döring K, Surrey T, Nollert P et al (1999) Effects of ligand binding on the internal dynamics of maltose-binding protein. Eur J Biochem 266:477–483 Döring K, Surrey T, Nollert P et al (1999) Effects of ligand binding on the internal dynamics of maltose-binding protein. Eur J Biochem 266:477–483
26.
Zurück zum Zitat Bermejo GA, Strub M-P, Ho C et al (2010) Ligand-free open−closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 49:1893–1902 Bermejo GA, Strub M-P, Ho C et al (2010) Ligand-free open−closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 49:1893–1902
27.
Zurück zum Zitat Ortega G, Castaño D, Diercks T et al (2012) Carbohydrate affinity for the glucose-galactose binding protein is regulated by allosteric domain motions. J Am Chem Soc 134:19869 Ortega G, Castaño D, Diercks T et al (2012) Carbohydrate affinity for the glucose-galactose binding protein is regulated by allosteric domain motions. J Am Chem Soc 134:19869
28.
Zurück zum Zitat Björkman AJ, Mowbray SL (1998) Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 279:651–664 Björkman AJ, Mowbray SL (1998) Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 279:651–664
29.
Zurück zum Zitat Magnusson U, Chaudhuri BN, Ko J et al (2002) Hinge-bending motion of D-Allose-binding protein from Escherichia coli. J Biol Chem 277:14077–14084 Magnusson U, Chaudhuri BN, Ko J et al (2002) Hinge-bending motion of D-Allose-binding protein from Escherichia coli. J Biol Chem 277:14077–14084
30.
Zurück zum Zitat Trakhanov S, Vyas NK, Luecke H et al (2005) Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC Leucine/Isoleucine/Valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry 44:6597–6608 Trakhanov S, Vyas NK, Luecke H et al (2005) Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC Leucine/Isoleucine/Valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry 44:6597–6608
31.
Zurück zum Zitat Telmer PG, Shilton BH (2003) Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants. J Biol Chem 278:34555–34567 Telmer PG, Shilton BH (2003) Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants. J Biol Chem 278:34555–34567
32.
Zurück zum Zitat Conroy PJ, Hearty S, Leonard P et al (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26 Conroy PJ, Hearty S, Leonard P et al (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26
33.
Zurück zum Zitat Bergmeyer HU, Bergmeyer J, Grassl M (1983) Methods of enzymatic analysis. Verlag Chemie, Weilheim (Vol. Bd. 1) Bergmeyer HU, Bergmeyer J, Grassl M (1983) Methods of enzymatic analysis. Verlag Chemie, Weilheim (Vol. Bd. 1)
34.
Zurück zum Zitat Hönes J, Müller P, Surridge N (2008) The technology behind glucose meters: test strips. Diabetes Technol Ther 10:S-10–S-26 Hönes J, Müller P, Surridge N (2008) The technology behind glucose meters: test strips. Diabetes Technol Ther 10:S-10–S-26
35.
Zurück zum Zitat Lever JE (1972) Quantitative assay of the binding of small molecules to protein: comparison of dialysis and membrane filter assays. Anal Biochem 50:73–83 Lever JE (1972) Quantitative assay of the binding of small molecules to protein: comparison of dialysis and membrane filter assays. Anal Biochem 50:73–83
36.
Zurück zum Zitat Oshima RG, Willis RC, Furlong CE et al (1974) Binding assays for amino acids. J Biol Chem 249:6033–6039 Oshima RG, Willis RC, Furlong CE et al (1974) Binding assays for amino acids. J Biol Chem 249:6033–6039
37.
Zurück zum Zitat Willis RC, Seegmiller JE (1976) A filtration assay specific for the determination of small quantities of l-glutamine. Anal Biochem 72:66–77 Willis RC, Seegmiller JE (1976) A filtration assay specific for the determination of small quantities of l-glutamine. Anal Biochem 72:66–77
38.
Zurück zum Zitat Zukin RS, Strange PG, Heavey LR et al (1977) Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry 16:381–386 Zukin RS, Strange PG, Heavey LR et al (1977) Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry 16:381–386
39.
Zurück zum Zitat Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27 Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27
40.
Zurück zum Zitat Loving GS, Sainlos M, Imperiali B (2010) Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 28:73–83 Loving GS, Sainlos M, Imperiali B (2010) Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 28:73–83
41.
Zurück zum Zitat Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York
42.
Zurück zum Zitat Boos W, Gordon AS, Hall RE et al (1972) Transport properties of the Galactose-binding protein of Escherichia coli. J Biol Chem 247:917–924 Boos W, Gordon AS, Hall RE et al (1972) Transport properties of the Galactose-binding protein of Escherichia coli. J Biol Chem 247:917–924
43.
Zurück zum Zitat Zukin RS, Hartig PR, Koshland DE (1977) Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc Natl Acad Sci 74:1932–1936 Zukin RS, Hartig PR, Koshland DE (1977) Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc Natl Acad Sci 74:1932–1936
44.
Zurück zum Zitat Zhou LQ, Cass AEG (1991) Periplasmic binding protein based biosensors. 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor. Biosens Bioelectron 6:445–450 Zhou LQ, Cass AEG (1991) Periplasmic binding protein based biosensors. 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor. Biosens Bioelectron 6:445–450
45.
Zurück zum Zitat Sohanpal K, Watsuji T, Zhou LQ et al (1993) Reagentless fluorescence sensors based upon specific binding proteins. Sens Actuators B Chem 11:547–552 Sohanpal K, Watsuji T, Zhou LQ et al (1993) Reagentless fluorescence sensors based upon specific binding proteins. Sens Actuators B Chem 11:547–552
46.
Zurück zum Zitat Gilardi G, Zhou LQ, Hibbert L et al (1994) Engineering the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66:3840–3847 Gilardi G, Zhou LQ, Hibbert L et al (1994) Engineering the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66:3840–3847
47.
Zurück zum Zitat de Lorimier RM, Smith JJ, Dwyer MA et al (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675 de Lorimier RM, Smith JJ, Dwyer MA et al (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675
48.
Zurück zum Zitat Amiss TJ, Sherman DB, Nycz CM et al (2007) Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci 16:2350–2359 Amiss TJ, Sherman DB, Nycz CM et al (2007) Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci 16:2350–2359
49.
Zurück zum Zitat Khan F, Saxl TE, Pickup JC (2010) Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 399:39–43 Khan F, Saxl TE, Pickup JC (2010) Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 399:39–43
50.
Zurück zum Zitat Dattelbaum JD, Looger LL, Benson DE et al (2005) Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor. Protein Sci 14:284–291 Dattelbaum JD, Looger LL, Benson DE et al (2005) Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor. Protein Sci 14:284–291
51.
Zurück zum Zitat Sherman DB, Pitner JB, Ambroise A et al (2006) Synthesis of thiol-reactive, long-wavelength fluorescent phenoxazine derivatives for biosensor applications. Bioconjug Chem 17:387–392 Sherman DB, Pitner JB, Ambroise A et al (2006) Synthesis of thiol-reactive, long-wavelength fluorescent phenoxazine derivatives for biosensor applications. Bioconjug Chem 17:387–392
52.
Zurück zum Zitat Thomas J, Sherman DB, Amiss TJ et al (2007) Synthesis and biosensor performance of a near-IR thiol-reactive fluorophore based on Benzothiazolium Squaraine. Bioconjug Chem 18:1841–1846 Thomas J, Sherman DB, Amiss TJ et al (2007) Synthesis and biosensor performance of a near-IR thiol-reactive fluorophore based on Benzothiazolium Squaraine. Bioconjug Chem 18:1841–1846
53.
Zurück zum Zitat Thomas J, Cash MT (2008) Preparation of coumarin containing dyes having ratiometric fluorescence response for biosensor in detecting metabolites. Patent number WO2008147805A2 Thomas J, Cash MT (2008) Preparation of coumarin containing dyes having ratiometric fluorescence response for biosensor in detecting metabolites. Patent number WO2008147805A2
54.
Zurück zum Zitat Thomas J, Ambroise A, Birchfield K et al (2006) Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites. Proc SPIE-Int Soc Opt Eng 6078:60781Y-1–60781Y-9 Thomas J, Ambroise A, Birchfield K et al (2006) Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites. Proc SPIE-Int Soc Opt Eng 6078:60781Y-1–60781Y-9
55.
Zurück zum Zitat Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461 Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461
56.
Zurück zum Zitat Weidemaier K, Lastovich A, Keith S et al (2011) Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor. Biosens Bioelectron 26:4117–4123 Weidemaier K, Lastovich A, Keith S et al (2011) Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor. Biosens Bioelectron 26:4117–4123
57.
Zurück zum Zitat Tolosa L, Ge X, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314:199–205 Tolosa L, Ge X, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314:199–205
58.
Zurück zum Zitat Lam H, Kostov Y, Rao G et al (2008) Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem 383:61–67 Lam H, Kostov Y, Rao G et al (2008) Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem 383:61–67
59.
Zurück zum Zitat Ge X, Tolosa L, Rao G (2004) Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem 76:1403–1410 Ge X, Tolosa L, Rao G (2004) Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem 76:1403–1410
60.
Zurück zum Zitat Gilardi G, Mei G, Rosato N et al (1997) Spectroscopic properties of an engineered maltose binding protein. Protein Eng 10:479–486 Gilardi G, Mei G, Rosato N et al (1997) Spectroscopic properties of an engineered maltose binding protein. Protein Eng 10:479–486
61.
Zurück zum Zitat Brune M, Hunter JL, Howell SA et al (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380 Brune M, Hunter JL, Howell SA et al (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380
62.
Zurück zum Zitat Dattelbaum JD, Lakowicz JR (2001) Optical determination of glutamine using a genetically engineered protein. Anal Biochem 291:89–95 Dattelbaum JD, Lakowicz JR (2001) Optical determination of glutamine using a genetically engineered protein. Anal Biochem 291:89–95
63.
Zurück zum Zitat Saxl T, Khan F, Matthews DR et al (2009) Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens Bioelectron 24:3229–3234 Saxl T, Khan F, Matthews DR et al (2009) Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens Bioelectron 24:3229–3234
64.
Zurück zum Zitat Saxl T, Khan F, Ferla M et al (2011) A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 136:968–972 (Cambridge, UK) Saxl T, Khan F, Ferla M et al (2011) A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 136:968–972 (Cambridge, UK)
65.
Zurück zum Zitat Tolosa L (2009) On the design of low-cost fluorescent protein biosensors. Adv Biochem Eng Biotechnol 116:143–157 Tolosa L (2009) On the design of low-cost fluorescent protein biosensors. Adv Biochem Eng Biotechnol 116:143–157
66.
Zurück zum Zitat Lakowicz JR, Castellano FN, Dattelbaum JD et al (1998) Low-frequency modulation sensors using nanosecond fluorophores. Anal Chem 70:5115–5121 Lakowicz JR, Castellano FN, Dattelbaum JD et al (1998) Low-frequency modulation sensors using nanosecond fluorophores. Anal Chem 70:5115–5121
67.
Zurück zum Zitat Tolosa L, Gryczynski I, Eichhorn LR et al (1999) Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 267:114–120 Tolosa L, Gryczynski I, Eichhorn LR et al (1999) Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 267:114–120
68.
Zurück zum Zitat Ge X, Lam H, Modi SJ et al (2007) Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 1:864–872 Ge X, Lam H, Modi SJ et al (2007) Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 1:864–872
69.
Zurück zum Zitat Wenner BR, Douglass P, Shrestha S et al (2001) Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring. Proc SPIE-Int Soc Opt Eng 4252:59–70 Wenner BR, Douglass P, Shrestha S et al (2001) Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring. Proc SPIE-Int Soc Opt Eng 4252:59–70
70.
Zurück zum Zitat Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841 Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841
71.
Zurück zum Zitat Okumoto S, Takanaga H, Frommer WB (2008) Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol 180:271–295 Okumoto S, Takanaga H, Frommer WB (2008) Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol 180:271–295
72.
Zurück zum Zitat Galbán J, Sanz-Vicente I, Ortega E et al (2012) Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 402:3039–3054 Galbán J, Sanz-Vicente I, Ortega E et al (2012) Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 402:3039–3054
73.
Zurück zum Zitat Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci 99:9846–9851 Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci 99:9846–9851
74.
Zurück zum Zitat Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314 Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314
75.
Zurück zum Zitat Ha J-S, Song JJ, Lee Y-M et al (2007) Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 73:7408–7414 Ha J-S, Song JJ, Lee Y-M et al (2007) Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 73:7408–7414
76.
Zurück zum Zitat Gu H, Lalonde S, Okumoto S et al (2006) A novel analytical method for in vivo phosphate tracking. FEBS Lett 580:5885–5893 Gu H, Lalonde S, Okumoto S et al (2006) A novel analytical method for in vivo phosphate tracking. FEBS Lett 580:5885–5893
77.
Zurück zum Zitat Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778:1091–1099 Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778:1091–1099
78.
Zurück zum Zitat Okada S, Ota K, Ito T (2009) Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 18:2518–2527 Okada S, Ota K, Ito T (2009) Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 18:2518–2527
79.
Zurück zum Zitat Okumoto S, Looger LL, Micheva KD et al (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102:8740–8745 Okumoto S, Looger LL, Micheva KD et al (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102:8740–8745
80.
Zurück zum Zitat Fehr M, Lalonde S, Lager I et al (2003) In Vivo imaging of the dynamics of glucose uptake in the Cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133 Fehr M, Lalonde S, Lager I et al (2003) In Vivo imaging of the dynamics of glucose uptake in the Cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133
81.
Zurück zum Zitat Fehr M, Lalonde S, Ehrhardt DW et al (2004) Live imaging of glucose homeostasis in nuclei of COS-7 cells. J Fluoresc 14:603–609 Fehr M, Lalonde S, Ehrhardt DW et al (2004) Live imaging of glucose homeostasis in nuclei of COS-7 cells. J Fluoresc 14:603–609
82.
Zurück zum Zitat Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-Silencing mutants. Plant Cell 18:2314–2325 Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-Silencing mutants. Plant Cell 18:2314–2325
83.
Zurück zum Zitat Bermejo C, Haerizadeh F, Takanaga H et al (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6:1806–1817 Bermejo C, Haerizadeh F, Takanaga H et al (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6:1806–1817
84.
Zurück zum Zitat Dulla C, Tani H, Okumoto S et al (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 168:306–319 Dulla C, Tani H, Okumoto S et al (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 168:306–319
85.
Zurück zum Zitat Kaper T, Lager I, Looger LL et al (2008) Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol Biofuels 1:11 Kaper T, Lager I, Looger LL et al (2008) Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol Biofuels 1:11
86.
Zurück zum Zitat Hou B-H, Takanaga H, Grossmann G et al (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6:1818–1833 Hou B-H, Takanaga H, Grossmann G et al (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6:1818–1833
87.
Zurück zum Zitat Bermejo C, Ewald JC, Lanquar V et al (2011) In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 438:1–10 Bermejo C, Ewald JC, Lanquar V et al (2011) In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 438:1–10
88.
Zurück zum Zitat Crochet AP, Kabir MM, Francis MB et al (2010) Site-selective dual modification of periplasmic binding proteins for sensing applications. Biosens Bioelectron 26:55–61 Crochet AP, Kabir MM, Francis MB et al (2010) Site-selective dual modification of periplasmic binding proteins for sensing applications. Biosens Bioelectron 26:55–61
89.
Zurück zum Zitat Smith JJ, Conrad DW, Cuneo MJ et al (2005) Orthogonal site-specific protein modification by engineering reversible thiol protection mechanisms. Protein Sci 14:64–73 Smith JJ, Conrad DW, Cuneo MJ et al (2005) Orthogonal site-specific protein modification by engineering reversible thiol protection mechanisms. Protein Sci 14:64–73
90.
Zurück zum Zitat Dweik M, Milanick M, Grant S (2007) Development of a glucose binding protein biosensor. Proc SPIE-Int Soc Opt Eng 6759:67590I-1–67590I-8 Dweik M, Milanick M, Grant S (2007) Development of a glucose binding protein biosensor. Proc SPIE-Int Soc Opt Eng 6759:67590I-1–67590I-8
91.
Zurück zum Zitat Okoh MP, Hunter JL, Corrie JET et al (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45:14764–14771 Okoh MP, Hunter JL, Corrie JET et al (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45:14764–14771
92.
Zurück zum Zitat Der BS, Dattelbaum JD (2008) Construction of a reagentless glucose biosensor using molecular exciton luminescence. Anal Biochem 375:132–140 Der BS, Dattelbaum JD (2008) Construction of a reagentless glucose biosensor using molecular exciton luminescence. Anal Biochem 375:132–140
93.
Zurück zum Zitat Dacres H, Michie M, Anderson A et al (2013) Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor. Biosens Bioelectron 41:459–464 Dacres H, Michie M, Anderson A et al (2013) Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor. Biosens Bioelectron 41:459–464
94.
Zurück zum Zitat Shekhawat SS, Ghosh I (2011) Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 15:789–797 Shekhawat SS, Ghosh I (2011) Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 15:789–797
95.
Zurück zum Zitat Stynen B, Tournu H, Tavernier J et al (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382 Stynen B, Tournu H, Tavernier J et al (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382
96.
Zurück zum Zitat Teasley Hamorsky K, Ensor CM, Wei Y et al (2008) A bioluminescent molecular switch for glucose. Angew Chem 120:3778–3781 Teasley Hamorsky K, Ensor CM, Wei Y et al (2008) A bioluminescent molecular switch for glucose. Angew Chem 120:3778–3781
97.
Zurück zum Zitat Taneoka A, Sakaguchi-Mikami A, Yamazaki T et al (2009) The construction of a glucose-sensing luciferase. Biosens Bioelectron 25:76–81 Taneoka A, Sakaguchi-Mikami A, Yamazaki T et al (2009) The construction of a glucose-sensing luciferase. Biosens Bioelectron 25:76–81
98.
Zurück zum Zitat Sakaguchi-Mikami A, Taniguchi A, Sode K et al (2011) Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 108:725–733 Sakaguchi-Mikami A, Taniguchi A, Sode K et al (2011) Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 108:725–733
99.
Zurück zum Zitat Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336:263–273 Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336:263–273
100.
Zurück zum Zitat Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11:1483–1487 Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11:1483–1487
101.
Zurück zum Zitat Guntas G, Mansell TJ, Kim JR et al (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102:11224–11229 Guntas G, Mansell TJ, Kim JR et al (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102:11224–11229
102.
Zurück zum Zitat Ke W, Laurent AH, Armstrong MD et al (2012) Structure of an engineered beta-Lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 7:e39168 Ke W, Laurent AH, Armstrong MD et al (2012) Structure of an engineered beta-Lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 7:e39168
103.
Zurück zum Zitat Tullman J, Guntas G, Dumont M et al (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108:2535–2543 Tullman J, Guntas G, Dumont M et al (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108:2535–2543
104.
Zurück zum Zitat Jeong J, Kim SK, Ahn J et al (2006) Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 339:647–651 Jeong J, Kim SK, Ahn J et al (2006) Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 339:647–651
105.
Zurück zum Zitat Marvin JS, Schreiter ER, Echevarria IM et al (2011) A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79:3025–3036 Marvin JS, Schreiter ER, Echevarria IM et al (2011) A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79:3025–3036
106.
Zurück zum Zitat Alicea I, Marvin JS, Miklos AE et al (2011) Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. J Mol Biol 414:356–369 Alicea I, Marvin JS, Miklos AE et al (2011) Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. J Mol Biol 414:356–369
107.
Zurück zum Zitat Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by nature. Curr Opin Struct Biol 20:518–526 Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by nature. Curr Opin Struct Biol 20:518–526
108.
Zurück zum Zitat Trammell SA, Goldston HM, Tran PT et al (2001) Synthesis and characterization of a Ruthenium(II)-based redox conjugate for reagentless biosensing. Bioconjug Chem 12:643–647 Trammell SA, Goldston HM, Tran PT et al (2001) Synthesis and characterization of a Ruthenium(II)-based redox conjugate for reagentless biosensing. Bioconjug Chem 12:643–647
109.
Zurück zum Zitat Marvin JS, Corcoran EE, Hattangadi NA et al (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci 94:4366–4371 Marvin JS, Corcoran EE, Hattangadi NA et al (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci 94:4366–4371
110.
Zurück zum Zitat Benson DE, Conrad DW, de Lorimier RM et al (2001) Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science 293:1641–1644 Benson DE, Conrad DW, de Lorimier RM et al (2001) Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science 293:1641–1644
111.
Zurück zum Zitat Morón C, Tremps E, Garcia A et al (2012) Development of an electrochemical maltose biosensor. Key Eng Mat 495:116–119 Morón C, Tremps E, Garcia A et al (2012) Development of an electrochemical maltose biosensor. Key Eng Mat 495:116–119
112.
Zurück zum Zitat Wang J, Carmon KS, Luck LA et al (2005) Electrochemical impedance biosensor for glucose detection utilizing a periplasmic E. coli receptor protein. Electrochem Solid St 8:H61–H64 Wang J, Carmon KS, Luck LA et al (2005) Electrochemical impedance biosensor for glucose detection utilizing a periplasmic E. coli receptor protein. Electrochem Solid St 8:H61–H64
113.
Zurück zum Zitat Wang J, Luck LA, Suni II (2007) Immobilization of the Glucose-Galactose receptor protein onto a Au electrode through a genetically engineered cysteine residue. Electrochem Solid St 10:J33–J36 Wang J, Luck LA, Suni II (2007) Immobilization of the Glucose-Galactose receptor protein onto a Au electrode through a genetically engineered cysteine residue. Electrochem Solid St 10:J33–J36
114.
Zurück zum Zitat Sokolov I, Subba-Rao V, Luck LA (2006) Change in rigidity in the activated form of the Glucose/Galactose receptor from Escherichia coli: a phenomenon that will be key to the development of biosensors. Biophys J 90:1055–1063 Sokolov I, Subba-Rao V, Luck LA (2006) Change in rigidity in the activated form of the Glucose/Galactose receptor from Escherichia coli: a phenomenon that will be key to the development of biosensors. Biophys J 90:1055–1063
115.
Zurück zum Zitat Andreescu S, Luck LA (2008) Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal Biochem 375:282–290 Andreescu S, Luck LA (2008) Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal Biochem 375:282–290
116.
Zurück zum Zitat Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Roman JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC, Boca Raton, pp 301–323. doi:10.1201/9780203491232.ch17 Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Roman JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC, Boca Raton, pp 301–323. doi:10.​1201/​9780203491232.​ch17
117.
Zurück zum Zitat Dattelbaum AM, Baker GA, Fox JM et al (2009) PEGylation of a maltose biosensor promotes enhanced signal response when immobilized in a Silica Sol-Gel. Bioconjug Chem 20:2381–2384 Dattelbaum AM, Baker GA, Fox JM et al (2009) PEGylation of a maltose biosensor promotes enhanced signal response when immobilized in a Silica Sol-Gel. Bioconjug Chem 20:2381–2384
118.
Zurück zum Zitat Wada A, Mie M, Aizawa M et al (2003) Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices. J Am Chem Soc 125:16228–16234 Wada A, Mie M, Aizawa M et al (2003) Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices. J Am Chem Soc 125:16228–16234
119.
Zurück zum Zitat de Lorimier RM, Tian Y, Hellinga HW (2006) Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. Protein Sci 15:1936–1944 de Lorimier RM, Tian Y, Hellinga HW (2006) Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. Protein Sci 15:1936–1944
120.
Zurück zum Zitat Ye K, Schultz JS (2003) Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem 75:3451–3459 Ye K, Schultz JS (2003) Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem 75:3451–3459
121.
Zurück zum Zitat Salins LLE, Deo SK, Daunert S (2004) Phosphate binding protein as the biorecognition element in a biosensor for phosphate. Sens Actuators B B97:81–89 Salins LLE, Deo SK, Daunert S (2004) Phosphate binding protein as the biorecognition element in a biosensor for phosphate. Sens Actuators B B97:81–89
122.
Zurück zum Zitat Heo YJ, Takeuchi S (2012) Hydrogel microbeads for implantable glucose sensors. In: Ramalingam M, Tiwari A, Ramakrishna S, Kobayashi H (eds) Integrated biomaterials for biomedical technology. Scrivener Publishing LLC, Beverly MA Heo YJ, Takeuchi S (2012) Hydrogel microbeads for implantable glucose sensors. In: Ramalingam M, Tiwari A, Ramakrishna S, Kobayashi H (eds) Integrated biomaterials for biomedical technology. Scrivener Publishing LLC, Beverly MA
123.
Zurück zum Zitat Siegrist J, Kazarian T, Ensor C et al (2010) Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications. Sens Actuators B 149:51–58 Siegrist J, Kazarian T, Ensor C et al (2010) Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications. Sens Actuators B 149:51–58
124.
Zurück zum Zitat Staiano M, Sapio M, Scognamiglio V et al (2004) A thermostable sugar-binding protein from the Archaeon Pyrococcus horikoshii as a probe for the development of a stable fluorescence biosensor for diabetic patients. Biotechnol Prog 20:1572–1577 Staiano M, Sapio M, Scognamiglio V et al (2004) A thermostable sugar-binding protein from the Archaeon Pyrococcus horikoshii as a probe for the development of a stable fluorescence biosensor for diabetic patients. Biotechnol Prog 20:1572–1577
Metadaten
Titel
Periplasmic Binding Proteins in Biosensing Applications
verfasst von
Felix S. Grünewald
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/11663_2013_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.