Skip to main content
Erschienen in: Journal of Nanoparticle Research 5/2015

01.05.2015 | Research Paper

pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica

Erschienen in: Journal of Nanoparticle Research | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although the release of silver nanoparticles from various surfaces and coatings plays an important role in many practical applications, the mechanisms of these processes are not fully understood. Therefore, in this work, the charge-stabilized silver particles of well-defined surface properties, with average sizes of 15, 28, and 54 nm, were used to quantitatively study this problem. The silver nanoparticles were obtained by the chemical reduction method using trisodium citrate as the stabilizing agent. Their size distributions and stabilities were determined using dynamic light scattering and transmission electron microscopy. The electrophoretic mobility and zeta potential of nanoparticles were determined for controlled ionic strength as a function of pH. The monolayers were produced on poly(allylamine hydrochloride)-modified mica under diffusion-controlled conditions. The coverage was determined by a direct enumeration of deposited nanoparticles using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Using these well-defined monolayers, the kinetics of the release of nanoparticles was studied under controlled ionic strength and various pH values. The direct AFM and SEM measurements of the monolayer coverage, as a function of desorption time, allowed one to determine the kinetics of the release process. The equilibrium adsorption constant and the binding energy of particles were also determined using the random sequential adsorption model. The experimental results indicated that the release rate of particles is the fastest at lower pH values and for smaller particle sizes. This is confirmed by the binding energy values that at pH 3.5 varied between −15.9 and −18.1 kT for particles of the sizes 15 and 54 nm, respectively. These results were quantitatively interpreted in terms of the ion-pair concept where it was assumed that the binding energy between nanoparticles and the substrate was controlled by electrostatic interactions. Based on the conducted studies, one can conclude that the rate of nanoparticle release can be tuned by changing the pH values.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamczyk Z (2006) Particles at interfaces: interactions, deposition, structure, 1st edn. Interface Science and Technology, Academic Press, Amsterdam Adamczyk Z (2006) Particles at interfaces: interactions, deposition, structure, 1st edn. Interface Science and Technology, Academic Press, Amsterdam
Zurück zum Zitat Adamczyk Z, Nattich-Rak M, Sadowska M, Michna M, Szczepanik K (2013) Mechanisms of nanoparticle and bioparticle deposition: kinetic aspects. Colloids Surf A 439:3–22CrossRef Adamczyk Z, Nattich-Rak M, Sadowska M, Michna M, Szczepanik K (2013) Mechanisms of nanoparticle and bioparticle deposition: kinetic aspects. Colloids Surf A 439:3–22CrossRef
Zurück zum Zitat Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848CrossRef Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848CrossRef
Zurück zum Zitat Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266CrossRef Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266CrossRef
Zurück zum Zitat Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef
Zurück zum Zitat Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8919CrossRef Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8919CrossRef
Zurück zum Zitat Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350 Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350
Zurück zum Zitat He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng DY, Ou KL, Domb AJ (2014) Polymeric nanoparticles for therapy and imaging. Polym Adv Technol 25:1216–1225CrossRef He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng DY, Ou KL, Domb AJ (2014) Polymeric nanoparticles for therapy and imaging. Polym Adv Technol 25:1216–1225CrossRef
Zurück zum Zitat Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85A:47–60CrossRef Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85A:47–60CrossRef
Zurück zum Zitat Jachimska B, Jasiński T, Warszyński P, Adamczyk Z (2010) Conformations of poly (allylamine hydrochloride) in electrolyte solutions: experimental measurements and theoretical modeling. Colloids Surf A 355:7–15CrossRef Jachimska B, Jasiński T, Warszyński P, Adamczyk Z (2010) Conformations of poly (allylamine hydrochloride) in electrolyte solutions: experimental measurements and theoretical modeling. Colloids Surf A 355:7–15CrossRef
Zurück zum Zitat Jiang H, Moon K, Li Y, Wong P (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973CrossRef Jiang H, Moon K, Li Y, Wong P (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973CrossRef
Zurück zum Zitat Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef
Zurück zum Zitat Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRef Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRef
Zurück zum Zitat Kittler A, Grulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef Kittler A, Grulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef
Zurück zum Zitat Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nonotech Biol Med 6:570–574CrossRef Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nonotech Biol Med 6:570–574CrossRef
Zurück zum Zitat Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056CrossRef Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056CrossRef
Zurück zum Zitat Kulthong K, Srisung S, Boonpavanitchakulm K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8CrossRef Kulthong K, Srisung S, Boonpavanitchakulm K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8CrossRef
Zurück zum Zitat Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246CrossRef Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246CrossRef
Zurück zum Zitat Lee PC, Meisel DJ (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Catal 86:3391–3395 Lee PC, Meisel DJ (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Catal 86:3391–3395
Zurück zum Zitat Li X, Lenhart JJ, Walker HW (2011) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104CrossRef Li X, Lenhart JJ, Walker HW (2011) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104CrossRef
Zurück zum Zitat Morga M, Adamczyk Z (2013) Monolayers of cationic polyelectrolytes on mica—electrokinetic studies. J Colloid Interface Sci 407:196–204CrossRef Morga M, Adamczyk Z (2013) Monolayers of cationic polyelectrolytes on mica—electrokinetic studies. J Colloid Interface Sci 407:196–204CrossRef
Zurück zum Zitat Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371CrossRef Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371CrossRef
Zurück zum Zitat Nightingale ER (1959) Phenomenological theory of ion solvation effective radii of hydrated ions. J Phys Chem 63:1381–1387CrossRef Nightingale ER (1959) Phenomenological theory of ion solvation effective radii of hydrated ions. J Phys Chem 63:1381–1387CrossRef
Zurück zum Zitat Oberholzer MR, Stankovich JM, Carnie SL, Chan DYC, Lenhoff AM (1997) 2D and 3D interactions in random sequential adsorption of charged particles. J Colloid Interface Sci 194:138–153CrossRef Oberholzer MR, Stankovich JM, Carnie SL, Chan DYC, Lenhoff AM (1997) 2D and 3D interactions in random sequential adsorption of charged particles. J Colloid Interface Sci 194:138–153CrossRef
Zurück zum Zitat Oćwieja M, Adamczyk Z (2013) Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica. Langmuir 29:3546–3555CrossRef Oćwieja M, Adamczyk Z (2013) Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica. Langmuir 29:3546–3555CrossRef
Zurück zum Zitat Oćwieja M, Adamczyk Z, Morga M, Michna A (2011) High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Colloid Interface Sci 364:39–48CrossRef Oćwieja M, Adamczyk Z, Morga M, Michna A (2011) High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Colloid Interface Sci 364:39–48CrossRef
Zurück zum Zitat Oćwieja M, Adamczyk Z, Kubiak K (2012) Tuning properties of silver particle monolayers via controlled adsorption–desorption processes. J Colloid Interface Sci 376:1–11CrossRef Oćwieja M, Adamczyk Z, Kubiak K (2012) Tuning properties of silver particle monolayers via controlled adsorption–desorption processes. J Colloid Interface Sci 376:1–11CrossRef
Zurück zum Zitat Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340CrossRef Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340CrossRef
Zurück zum Zitat Panyala NR, Peña-Méndez EM, Havel J (2008) Silver of silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129 Panyala NR, Peña-Méndez EM, Havel J (2008) Silver of silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129
Zurück zum Zitat Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83CrossRef Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83CrossRef
Zurück zum Zitat Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876CrossRef Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876CrossRef
Zurück zum Zitat Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534CrossRef Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534CrossRef
Zurück zum Zitat Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef
Zurück zum Zitat Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem Probl Miner Process 45:85–98 Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem Probl Miner Process 45:85–98
Zurück zum Zitat Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesaty VJ, Suter MJF, Bernier-Latamani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168CrossRef Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesaty VJ, Suter MJF, Bernier-Latamani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168CrossRef
Zurück zum Zitat Wong KY, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? Med Chem Comm 1:125–131CrossRef Wong KY, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? Med Chem Comm 1:125–131CrossRef
Zurück zum Zitat Yuan Y, Oberholzer MR, Lenhoff AM (2000) Size does matter: electrostatically determined surface coverage trends in protein and colloid adsorption. Colloids Surf A 165:125–141CrossRef Yuan Y, Oberholzer MR, Lenhoff AM (2000) Size does matter: electrostatically determined surface coverage trends in protein and colloid adsorption. Colloids Surf A 165:125–141CrossRef
Zurück zum Zitat Zembala M, Adamczyk Z (2000) Measurements of streaming potential for mica covered by colloid particles. Langmuir 16:1593–1601CrossRef Zembala M, Adamczyk Z (2000) Measurements of streaming potential for mica covered by colloid particles. Langmuir 16:1593–1601CrossRef
Zurück zum Zitat Zembala M, Adamczyk Z, Warszynski P (2001) Influence of adsorbed particles on streaming potential of mica. Colloids Surf A 195:3–15CrossRef Zembala M, Adamczyk Z, Warszynski P (2001) Influence of adsorbed particles on streaming potential of mica. Colloids Surf A 195:3–15CrossRef
Zurück zum Zitat Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–4428CrossRef Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–4428CrossRef
Metadaten
Titel
pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica
Publikationsdatum
01.05.2015
Erschienen in
Journal of Nanoparticle Research / Ausgabe 5/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3035-0

Weitere Artikel der Ausgabe 5/2015

Journal of Nanoparticle Research 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.