Skip to main content
Erschienen in: Journal of Materials Science 24/2016

30.08.2016 | Original Paper

Phase selection and re-melting-induced anomalous eutectics in undercooled Ni–38 wt% Si alloys

verfasst von: Cun Lai, Haifeng Wang, Qian Pu, Tingting Xu, Jinsong Yang, Xi Zhang, Feng Liu

Erschienen in: Journal of Materials Science | Ausgabe 24/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Ni–38 wt% Si alloy whose eutectic products are two stoichiometric intermetallic compounds (i.e., NiSi and NiSi2) was undercooled by the melt fluxing technique. After in situ observations of the recalescence processes using a high-speed camera and by electron back-scattering diffraction analysis of the solidification microstructures, the crystal growth velocities, phase selection, and microstructure evolutions were studied. Due to a growth-controlled mechanism, the primary phase changes from the NiSi to the NiSi2 phase at a critical undercooling ΔT ≈ 48 K. Even in the absence of the driving force of chemical superheating, the transition from regular eutectics to anomalous eutectics happens. The reason is that the single-phase dendrite of NiSi2 phase solidifies firstly and then the NiSi phase grows epitaxially to form an uncoupled eutectic-dendrite at high undercooling. The present work provides further experimental evidences for the dual origins of anomalous eutectics (e.g., uncoupled eutectic-dendrite growth during the recalescence stage and coupled lamellar eutectic growth at low undercooling during the post-recalescence stage) and is helpful for understanding of non-equilibrium phenomena in undercooled melts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It should be mentioned that in recent work by Binder et al. [25], the high-speed video data with the help of POV-Ray were fitted assuming a reasonable overall shape of the growing phase (e.g., a spherical envelope) to obtain the growth velocity. Such a method should be more reliable than but is not adopted by the current work.
 
2
This is similar to the work by Li et al [27], in which the Co–61.8 at.% Si eutectic alloy was undercooled by both an electromagnetic levitator and an electrostatic levitator. At low undercooling, only a single recalescence event can be found but the microstructure consists of primary CoSi phase and CoSi–CoSi2 eutectics. In subsequent work by Zhang et al. [11], the recalescence behaviors of undercooled Co–61.8 at.% Si eutectic alloy are much more complex; please see their Fig. 1. All these results indicate that the transformation process and the recalescence behaviors may not follow the one-to-one relationship.
 
3
It should be noted that for coupled growth, the lamellar spacing of eutectic formed at high undercooling should be smaller than that formed at low undercooling. The present coarse eutectic is formed by uncoupled growth but not coupled growth. Therefore, it is not strange that the lamellar spacing of the present coarse eutectic formed at high undercooling is larger than that of the thin lamellar eutectic formed at low undercooling.
 
4
Eutectic-dendrite can be defined as a dendrite on the whole, the solids of which are formed by eutectic solidification. There are two kinds of eutectic-dendrite according to the growth mechanism, i.e., by coupled and uncoupled eutectic growth. For the former, other alloy element should be added to the eutectic alloy or a negative temperature gradient should be improved to the eutectic interface to make the interface unstable to a dendritic morphology. This is the physical basis for the current eutectic-dendrite growth theory [2, 23, 28]. For the latter, the primary dendrite phase is followed by solidification of a second phase.
 
Literatur
1.
Zurück zum Zitat Kurz W, Fisher DJ (1979) Dendrite growth in eutectic alloys: the coupled zone. Int Mater Rev 24:177–204CrossRef Kurz W, Fisher DJ (1979) Dendrite growth in eutectic alloys: the coupled zone. Int Mater Rev 24:177–204CrossRef
2.
Zurück zum Zitat Li JF, Zhou YH (2005) Eutectic growth in bulk undercooled melts. Acta Mater 53:2351–2359CrossRef Li JF, Zhou YH (2005) Eutectic growth in bulk undercooled melts. Acta Mater 53:2351–2359CrossRef
3.
Zurück zum Zitat Li JF, Li XL, Liu L et al (2008) Mechanism of anomalous eutectic formation in the solidification of undercooled Ni–Sn eutectic alloy. J Mater Res 23:2139–2148CrossRef Li JF, Li XL, Liu L et al (2008) Mechanism of anomalous eutectic formation in the solidification of undercooled Ni–Sn eutectic alloy. J Mater Res 23:2139–2148CrossRef
4.
Zurück zum Zitat Wei XX, Lin X, Xu W et al (2015) Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts. Acta Mater 95:44–56CrossRef Wei XX, Lin X, Xu W et al (2015) Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts. Acta Mater 95:44–56CrossRef
5.
Zurück zum Zitat Herlach DM (1994) Non-equilibrium solidification of undercooled metallic melts. Mater Sci Eng Rep R 12:177–272CrossRef Herlach DM (1994) Non-equilibrium solidification of undercooled metallic melts. Mater Sci Eng Rep R 12:177–272CrossRef
6.
Zurück zum Zitat Liu JM, Zhou YH, Shang BL (1992) Theory and experiments on irregular eutectic growth: investigation on Al–Si eutectic growth. J Mater Sci 27:2067–2074CrossRef Liu JM, Zhou YH, Shang BL (1992) Theory and experiments on irregular eutectic growth: investigation on Al–Si eutectic growth. J Mater Sci 27:2067–2074CrossRef
7.
Zurück zum Zitat Wang JT, Kang SB, Kim HW et al (2002) Lamellae deformation and structural evolution in an Al–33 % Cu eutectic alloy during equal-channel angular pressing. J Mater Sci 37:5223–5227CrossRef Wang JT, Kang SB, Kim HW et al (2002) Lamellae deformation and structural evolution in an Al–33 % Cu eutectic alloy during equal-channel angular pressing. J Mater Sci 37:5223–5227CrossRef
8.
Zurück zum Zitat Zhao S, Li JF, Liu L et al (2009) Eutectic growth from cellular to dendritic form in the undercooled Ag–Cu eutectic alloy melt. J Cryst Growth 311:1387–1391CrossRef Zhao S, Li JF, Liu L et al (2009) Eutectic growth from cellular to dendritic form in the undercooled Ag–Cu eutectic alloy melt. J Cryst Growth 311:1387–1391CrossRef
9.
Zurück zum Zitat Clopet CR, Cochrane RF, Mullis AM (2013) The origin of anomalous eutectic structures in undercooled Ag–Cu alloy. Acta Mater 61:6894–6902CrossRef Clopet CR, Cochrane RF, Mullis AM (2013) The origin of anomalous eutectic structures in undercooled Ag–Cu alloy. Acta Mater 61:6894–6902CrossRef
10.
Zurück zum Zitat Yao WJ, Wang N, Wei B (2003) Containerless rapid solidification of highly undercooled Co–Si eutectic alloys. Mater Sci Eng A 344:10–19CrossRef Yao WJ, Wang N, Wei B (2003) Containerless rapid solidification of highly undercooled Co–Si eutectic alloys. Mater Sci Eng A 344:10–19CrossRef
11.
Zurück zum Zitat Zhang YK, Gao J, Kolbe M et al (2013) Phase selection and microstructure formation in undercooled Co–61.8 at.% Si melts under various containerless processing conditions. Acta Mater 61:4861–4873CrossRef Zhang YK, Gao J, Kolbe M et al (2013) Phase selection and microstructure formation in undercooled Co–61.8 at.% Si melts under various containerless processing conditions. Acta Mater 61:4861–4873CrossRef
12.
Zurück zum Zitat Li M, Kuribayashi K (2003) Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co–Sn and Ni–Si eutectic melts. Metall Mater Trans A 34:2999–3008CrossRef Li M, Kuribayashi K (2003) Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co–Sn and Ni–Si eutectic melts. Metall Mater Trans A 34:2999–3008CrossRef
13.
Zurück zum Zitat Liu L, Wei XX, Huang QS et al (2012) Anomalous eutectic formation in the solidification of undercooled Co–Sn alloys. J Cryst Growth 358:20–28CrossRef Liu L, Wei XX, Huang QS et al (2012) Anomalous eutectic formation in the solidification of undercooled Co–Sn alloys. J Cryst Growth 358:20–28CrossRef
14.
Zurück zum Zitat Liu L, Li JF, Zhou YH (2011) Solidification interface morphology pattern in the undercooled Co–24.0 at.%Sn eutectic melt. Acta Mater 59:5558–5567CrossRef Liu L, Li JF, Zhou YH (2011) Solidification interface morphology pattern in the undercooled Co–24.0 at.%Sn eutectic melt. Acta Mater 59:5558–5567CrossRef
15.
Zurück zum Zitat Yang C, Gao J, Zhang YK et al (2011) New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: in situ observations and EBSD characterization. Acta Mater 59:3915–3926CrossRef Yang C, Gao J, Zhang YK et al (2011) New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: in situ observations and EBSD characterization. Acta Mater 59:3915–3926CrossRef
16.
Zurück zum Zitat Xing LQ, Zhao DQ, Chen XC (1993) Solidification of undercooled Ni–32.5 wt%Sn eutectic alloy. J Mater Sci 28:2733–2737CrossRef Xing LQ, Zhao DQ, Chen XC (1993) Solidification of undercooled Ni–32.5 wt%Sn eutectic alloy. J Mater Sci 28:2733–2737CrossRef
17.
Zurück zum Zitat Kattamis TZ, Flemings MC (1970) Structure of undercooled Ni–Sn eutectic. Metall Trans 1:1449–1451 Kattamis TZ, Flemings MC (1970) Structure of undercooled Ni–Sn eutectic. Metall Trans 1:1449–1451
18.
Zurück zum Zitat Cao YQ, Lin X, Wang ZT et al (2015) Three-dimensional reconstruction of anomalous eutectic in laser remelted Ni–30 wt%Sn alloy. Sci Technol Adv Mater 16:1–11CrossRef Cao YQ, Lin X, Wang ZT et al (2015) Three-dimensional reconstruction of anomalous eutectic in laser remelted Ni–30 wt%Sn alloy. Sci Technol Adv Mater 16:1–11CrossRef
19.
Zurück zum Zitat Powell GL, Hogan LM (1965) Undercooling in silver-copper eutectic alloys. J Inst Metals 93:505–512 Powell GL, Hogan LM (1965) Undercooling in silver-copper eutectic alloys. J Inst Metals 93:505–512
20.
Zurück zum Zitat Jones BL (1971) Growth mechanisms in undercooled eutectic. Metall Trans 2:2950–2951CrossRef Jones BL (1971) Growth mechanisms in undercooled eutectic. Metall Trans 2:2950–2951CrossRef
21.
Zurück zum Zitat Wei BB, Yang GC, Zhou YH (1991) High undercooling and rapid solidification of Ni–32.5%Sn eutectic alloy. Acta Metall Mater 39:1249–1258CrossRef Wei BB, Yang GC, Zhou YH (1991) High undercooling and rapid solidification of Ni–32.5%Sn eutectic alloy. Acta Metall Mater 39:1249–1258CrossRef
22.
Zurück zum Zitat Li JF, Jie WQ, Zhao S et al (2007) Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni–Sn eutectic melt. Metall Mater Trans A 38:1806–1816CrossRef Li JF, Jie WQ, Zhao S et al (2007) Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni–Sn eutectic melt. Metall Mater Trans A 38:1806–1816CrossRef
23.
Zurück zum Zitat Goetzinger R, Barth M, Herlach DM (1998) Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni–Si, Co–Sb and Ni–Al–Ti alloys. Acta Mater 46:1647–1655CrossRef Goetzinger R, Barth M, Herlach DM (1998) Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni–Si, Co–Sb and Ni–Al–Ti alloys. Acta Mater 46:1647–1655CrossRef
24.
Zurück zum Zitat Nash P, Nash A (1987) The Ni–Si (Nickel–Silicon) system. Bull Alloy Phase Diagr 8:6–14CrossRef Nash P, Nash A (1987) The Ni–Si (Nickel–Silicon) system. Bull Alloy Phase Diagr 8:6–14CrossRef
25.
Zurück zum Zitat Binder S, Galenko PK, Herlach DM (2014) The effect of fluid flow on the solidification of Ni2B from the undercooled melt. J Appl Phys 115:053511CrossRef Binder S, Galenko PK, Herlach DM (2014) The effect of fluid flow on the solidification of Ni2B from the undercooled melt. J Appl Phys 115:053511CrossRef
26.
Zurück zum Zitat Wang HF, Liu F, Chen Z et al (2007) Effect of non-linear liquidus and solidus in undercooled dendrite growth: a comparative study in Ni–0.7 at.%B and Ni–1 at.%Zr systems. Scr Mater 57:413–416CrossRef Wang HF, Liu F, Chen Z et al (2007) Effect of non-linear liquidus and solidus in undercooled dendrite growth: a comparative study in Ni–0.7 at.%B and Ni–1 at.%Zr systems. Scr Mater 57:413–416CrossRef
27.
Zurück zum Zitat Li MJ, Nagashio K, Ishikawa T et al (2008) Microstructure formation and in situ phase identification from undercooled Co–61.8 at.%Si melts solidified on an electromagnetic levitator and an electrostatic levitator. Acta Mater 56:2514–2525CrossRef Li MJ, Nagashio K, Ishikawa T et al (2008) Microstructure formation and in situ phase identification from undercooled Co–61.8 at.%Si melts solidified on an electromagnetic levitator and an electrostatic levitator. Acta Mater 56:2514–2525CrossRef
28.
Zurück zum Zitat Kuang WW, Wang HF, Liu F et al (2016) Modeling of eutectic dendrite growth in undercooled binary alloys. J Mater Sci 51:2141–2152CrossRef Kuang WW, Wang HF, Liu F et al (2016) Modeling of eutectic dendrite growth in undercooled binary alloys. J Mater Sci 51:2141–2152CrossRef
29.
Zurück zum Zitat Boettinger WJ, Coriell SR, Greer AL et al (2000) Solidification microstructures: recent developments, future directions. Acta Mater 48:43–70CrossRef Boettinger WJ, Coriell SR, Greer AL et al (2000) Solidification microstructures: recent developments, future directions. Acta Mater 48:43–70CrossRef
30.
Zurück zum Zitat Wei XX, Xu W, Kang JL et al (2016) Metastable Co23B6 phase solidified from deeply undercooled Co79.3B20.7 alloy melt. J Mater Sci 51:6436–6443CrossRef Wei XX, Xu W, Kang JL et al (2016) Metastable Co23B6 phase solidified from deeply undercooled Co79.3B20.7 alloy melt. J Mater Sci 51:6436–6443CrossRef
31.
Zurück zum Zitat Tatsuya T, Kazumasa N, Hiroshi O et al (2003) Thermodynamic assessment of the Ni–Si system by incorporating ab initio energetic calculations into the CALPHAD approach. CALPHAD Comput Coupling Phase Diagr Thermochem 27:161–168CrossRef Tatsuya T, Kazumasa N, Hiroshi O et al (2003) Thermodynamic assessment of the Ni–Si system by incorporating ab initio energetic calculations into the CALPHAD approach. CALPHAD Comput Coupling Phase Diagr Thermochem 27:161–168CrossRef
32.
Zurück zum Zitat Ahmad R, Cochrane RF, Mullis AM (2012) The formation of regular αNi-γ(Ni31Si12) eutectic structures from undercooled Ni–25 at.%Si melts. Intermetallics 22:55–61CrossRef Ahmad R, Cochrane RF, Mullis AM (2012) The formation of regular αNi-γ(Ni31Si12) eutectic structures from undercooled Ni–25 at.%Si melts. Intermetallics 22:55–61CrossRef
33.
Zurück zum Zitat Cao LG, Cochrane RF, Mullis AM (2014) Lamella structure formation in drop-tube processed Ni–25.3 at.%Si alloy. J Alloys Compd 615:S599–S601CrossRef Cao LG, Cochrane RF, Mullis AM (2014) Lamella structure formation in drop-tube processed Ni–25.3 at.%Si alloy. J Alloys Compd 615:S599–S601CrossRef
34.
Zurück zum Zitat Dutra AT, Milenkovic S, Kiminami CS et al (2004) Microstructure and metastable phase formation in a rapidly solidified Ni–Si eutectic alloy using a melt-spinning technique. J Alloys Compd 381:72–76CrossRef Dutra AT, Milenkovic S, Kiminami CS et al (2004) Microstructure and metastable phase formation in a rapidly solidified Ni–Si eutectic alloy using a melt-spinning technique. J Alloys Compd 381:72–76CrossRef
35.
Zurück zum Zitat Cao LG, Cochrane RF, Mullis AM (2015) Microstructural evolution and phase formation in rapidly solidified Ni–25.3 at.%Si alloy. Metall Mater Trans A 46:4705–4715CrossRef Cao LG, Cochrane RF, Mullis AM (2015) Microstructural evolution and phase formation in rapidly solidified Ni–25.3 at.%Si alloy. Metall Mater Trans A 46:4705–4715CrossRef
36.
Zurück zum Zitat Schwarz M, Karma A, Eckler K et al (1994) Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett 73:1380–1383CrossRef Schwarz M, Karma A, Eckler K et al (1994) Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett 73:1380–1383CrossRef
37.
Zurück zum Zitat Karma A (1998) Model of grain refinement in solidification of undercooled melts. Int J Non-Equilib Process 11:201–233 Karma A (1998) Model of grain refinement in solidification of undercooled melts. Int J Non-Equilib Process 11:201–233
38.
Zurück zum Zitat Wang HF, Liu F, Tan YM (2011) Modeling grain refinement for undercooled single-phase solid-solution alloys. Acta Mater 59:4787–4797CrossRef Wang HF, Liu F, Tan YM (2011) Modeling grain refinement for undercooled single-phase solid-solution alloys. Acta Mater 59:4787–4797CrossRef
39.
Zurück zum Zitat Cline HE (1971) Shape instabilities of eutectic composites at elevated temperatures. Acta Metall 19:481–490CrossRef Cline HE (1971) Shape instabilities of eutectic composites at elevated temperatures. Acta Metall 19:481–490CrossRef
Metadaten
Titel
Phase selection and re-melting-induced anomalous eutectics in undercooled Ni–38 wt% Si alloys
verfasst von
Cun Lai
Haifeng Wang
Qian Pu
Tingting Xu
Jinsong Yang
Xi Zhang
Feng Liu
Publikationsdatum
30.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0312-y

Weitere Artikel der Ausgabe 24/2016

Journal of Materials Science 24/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.