Skip to main content

2016 | OriginalPaper | Buchkapitel

12. Photocatalytic Water Splitting

verfasst von : Aleksandar Staykov, Stephen M. Lyth, Motonori Watanabe

Erschienen in: Hydrogen Energy Engineering

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the topic of photocatalytic water splitting. Photosynthesis in nature is discussed leading into artificial photosynthesis in the lab. The basic principles of photocatalytic water splitting are introduced, followed by materials used for artificial photosynthesis, visible-light-driven photocatalysis, and dye-sensitized visible-light-driven photocatalysis, inorganic visible light-driven photocatalysis, and organic–inorganic hybrid systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Ann Rev Energy Environ 24:227–279CrossRef Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Ann Rev Energy Environ 24:227–279CrossRef
2.
Zurück zum Zitat Bard AJ, Fox AM (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRef Bard AJ, Fox AM (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRef
3.
Zurück zum Zitat Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Nielson JR, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRef Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Nielson JR, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRef
4.
Zurück zum Zitat Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982CrossRef Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982CrossRef
5.
Zurück zum Zitat Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef
6.
Zurück zum Zitat Yan H, Wang X, Yao M, Yao X (2013) Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci Mater Intern 23:402–407CrossRef Yan H, Wang X, Yao M, Yao X (2013) Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci Mater Intern 23:402–407CrossRef
7.
Zurück zum Zitat Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ Sci 2:364–386CrossRef Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ Sci 2:364–386CrossRef
8.
Zurück zum Zitat Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRef Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRef
9.
Zurück zum Zitat Yamada Y, Yasuda H, Tayagaki T, Kanemitsu Y (2009) Photocarrier recombination dynamics in highly excited SrTiO3 studied by transient absorption and photoluminescence spectroscopy. Appl Phys Lett 95:121112CrossRef Yamada Y, Yasuda H, Tayagaki T, Kanemitsu Y (2009) Photocarrier recombination dynamics in highly excited SrTiO3 studied by transient absorption and photoluminescence spectroscopy. Appl Phys Lett 95:121112CrossRef
10.
Zurück zum Zitat Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86CrossRef Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86CrossRef
11.
Zurück zum Zitat Lehn JM, Sauvage JP, Ziessel R (1980) Photochemical water splitting continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv J Chim 4:623–627 Lehn JM, Sauvage JP, Ziessel R (1980) Photochemical water splitting continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv J Chim 4:623–627
12.
Zurück zum Zitat Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc, Faraday Trans 1(81):1237–1246CrossRef Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc, Faraday Trans 1(81):1237–1246CrossRef
13.
Zurück zum Zitat Bamwenda GR, Tshbota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol A 89:177–189CrossRef Bamwenda GR, Tshbota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol A 89:177–189CrossRef
14.
Zurück zum Zitat Iwase A, Kato H, Kudo A (2006) Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting. A Catal Lett 108:7–10CrossRef Iwase A, Kato H, Kudo A (2006) Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting. A Catal Lett 108:7–10CrossRef
15.
Zurück zum Zitat Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 543–544 Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 543–544
16.
Zurück zum Zitat Kawai T, Sakata T (1980) Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces. Chem Phys Lett 72:87–89CrossRef Kawai T, Sakata T (1980) Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces. Chem Phys Lett 72:87–89CrossRef
17.
Zurück zum Zitat Inoue Y, Hayashi O, Sato K (1990) Photocatalytic activities of potassium-doped lead niobates and the effect of poling. J Chem Soc, Faraday Trans 86:2277–2282CrossRef Inoue Y, Hayashi O, Sato K (1990) Photocatalytic activities of potassium-doped lead niobates and the effect of poling. J Chem Soc, Faraday Trans 86:2277–2282CrossRef
18.
Zurück zum Zitat Iwase A, Kato H, Kudo A (2005) A novel photodeposition method in the presence of nitrate ions for loading of an iridium oxide cocatalyst for water splitting. Chem Lett 34:946–947CrossRef Iwase A, Kato H, Kudo A (2005) A novel photodeposition method in the presence of nitrate ions for loading of an iridium oxide cocatalyst for water splitting. Chem Lett 34:946–947CrossRef
19.
Zurück zum Zitat Hara M, Waraksa C, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered Tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem 104:5275–5280CrossRef Hara M, Waraksa C, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered Tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem 104:5275–5280CrossRef
20.
Zurück zum Zitat Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K, Inoue Y (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151 Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K, Inoue Y (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151
21.
Zurück zum Zitat Honda K, Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Honda K, Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
22.
23.
Zurück zum Zitat Kato H, Kudo A (2003) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492CrossRef Kato H, Kudo A (2003) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492CrossRef
24.
Zurück zum Zitat Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569CrossRef Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569CrossRef
25.
Zurück zum Zitat Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377CrossRef Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377CrossRef
26.
Zurück zum Zitat Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRef Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRef
27.
Zurück zum Zitat Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261CrossRef Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261CrossRef
28.
Zurück zum Zitat Bird RE, Hulstrom RK, Lewis LJ (1983) Terrestrial solar spectral data sets. Sol Energy 30:563–573CrossRef Bird RE, Hulstrom RK, Lewis LJ (1983) Terrestrial solar spectral data sets. Sol Energy 30:563–573CrossRef
29.
Zurück zum Zitat Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54CrossRef Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54CrossRef
30.
Zurück zum Zitat Xin G, Guo W, Ma T (2009) Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl Surf Sci 256:165–169CrossRef Xin G, Guo W, Ma T (2009) Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl Surf Sci 256:165–169CrossRef
31.
Zurück zum Zitat Enea O, Bard AJ (1986) Photoredox Reactions at semiconductor particles incorporated into clays. CdS and. ZnS + CdS mixtures in colloidal montmorillonite suspensions. J Phys Chem 90:301–306CrossRef Enea O, Bard AJ (1986) Photoredox Reactions at semiconductor particles incorporated into clays. CdS and. ZnS + CdS mixtures in colloidal montmorillonite suspensions. J Phys Chem 90:301–306CrossRef
32.
Zurück zum Zitat Hirai T, Okubo H, Komasawa I (1999) Size-selective incorporation of CdS nanoparticles into mesoporous silica. J Phys Chem B 103:4228–4230CrossRef Hirai T, Okubo H, Komasawa I (1999) Size-selective incorporation of CdS nanoparticles into mesoporous silica. J Phys Chem B 103:4228–4230CrossRef
33.
Zurück zum Zitat Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef
34.
Zurück zum Zitat Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96:5546–5552CrossRef Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96:5546–5552CrossRef
35.
Zurück zum Zitat Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRef Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRef
36.
Zurück zum Zitat Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753CrossRef Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753CrossRef
37.
Zurück zum Zitat Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Electrochemistry (Tokyo, Jpn.) 70:463–465 Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Electrochemistry (Tokyo, Jpn.) 70:463–465
38.
Zurück zum Zitat Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun 16:1698–1699 Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun 16:1698–1699
39.
Zurück zum Zitat Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (<600 nm). Chem Lett 7:736–737CrossRef Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (<600 nm). Chem Lett 7:736–737CrossRef
40.
Zurück zum Zitat Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172:591–595CrossRef Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172:591–595CrossRef
41.
Zurück zum Zitat Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287CrossRef Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287CrossRef
42.
Zurück zum Zitat Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109:20504–20510CrossRef Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109:20504–20510CrossRef
43.
Zurück zum Zitat Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295CrossRef Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295CrossRef
44.
Zurück zum Zitat Sun X, Maeda K, Faucheur ML, Teramura K, Domen K (2007) Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal A 327:114–121CrossRef Sun X, Maeda K, Faucheur ML, Teramura K, Domen K (2007) Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal A 327:114–121CrossRef
45.
Zurück zum Zitat Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204CrossRef Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204CrossRef
46.
Zurück zum Zitat Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351CrossRef Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351CrossRef
47.
Zurück zum Zitat Tsubomura H, Matsumura M, Nomura Y, Amamiya T (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403CrossRef Tsubomura H, Matsumura M, Nomura Y, Amamiya T (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403CrossRef
48.
Zurück zum Zitat O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef
49.
Zurück zum Zitat Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M (1981) Sustained water cleavage by visible light. J Am Chem Soc 103:6324–6329CrossRef Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M (1981) Sustained water cleavage by visible light. J Am Chem Soc 103:6324–6329CrossRef
50.
Zurück zum Zitat Houlding VH, Gratzel M (1983) Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRef Houlding VH, Gratzel M (1983) Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRef
51.
Zurück zum Zitat Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137:63–69CrossRef Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137:63–69CrossRef
52.
Zurück zum Zitat Watanabe M, Hagiwara H, Iribe A, Ogata Y, Shiomi K, Staykov A, Ida S, Tanaka K, Ishihara T (2014) Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. J Mater Chem A 2:12952–12961CrossRef Watanabe M, Hagiwara H, Iribe A, Ogata Y, Shiomi K, Staykov A, Ida S, Tanaka K, Ishihara T (2014) Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. J Mater Chem A 2:12952–12961CrossRef
53.
Zurück zum Zitat Han WS, Wee KR, Kim HY, Pac C, Nabetani Y, Yamamoto D, Shimada T, Inoue H, Choi H, Cho K, Kang SO (2012) Hydrophilicity control of visible-light hydrogen evolution and dynamics of the charge-separated state in Dye/TiO2/Pt hybrid systems. Chem Eur J 18:15368–15381CrossRef Han WS, Wee KR, Kim HY, Pac C, Nabetani Y, Yamamoto D, Shimada T, Inoue H, Choi H, Cho K, Kang SO (2012) Hydrophilicity control of visible-light hydrogen evolution and dynamics of the charge-separated state in Dye/TiO2/Pt hybrid systems. Chem Eur J 18:15368–15381CrossRef
54.
Zurück zum Zitat Lee J, Kwak J, Ko KC, Park JH, Ko JH, Park N, Kim E, Ryu DH, Ahn TK, Lee JY, Son SU (2012) Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem Commun 48:11431–11433 Lee J, Kwak J, Ko KC, Park JH, Ko JH, Park N, Kim E, Ryu DH, Ahn TK, Lee JY, Son SU (2012) Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem Commun 48:11431–11433
55.
Zurück zum Zitat Kim W, Tachikawa T, Majima T. Choi W (2009) Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J Phys Chem C 113:10603–10609 Kim W, Tachikawa T, Majima T. Choi W (2009) Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J Phys Chem C 113:10603–10609
56.
Zurück zum Zitat Zhang LX, Veikko U, Mao J, Cai P, Peng T (2012) Visible-light-induced photocatalytic hydrogen production over binuclear Ru II—bipyridyl dye-sensitized TiO2 without noble metal. Chem Eur J 18:12103–12111CrossRef Zhang LX, Veikko U, Mao J, Cai P, Peng T (2012) Visible-light-induced photocatalytic hydrogen production over binuclear Ru II—bipyridyl dye-sensitized TiO2 without noble metal. Chem Eur J 18:12103–12111CrossRef
57.
Zurück zum Zitat Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104:5275–5280CrossRef Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104:5275–5280CrossRef
58.
Zurück zum Zitat Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore NL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRef Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore NL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRef
59.
Zurück zum Zitat Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75CrossRef Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75CrossRef
60.
Zurück zum Zitat Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 −/I− shuttle redox mediator under visible light irradiation. Chem Commun 23:2416–2417 Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun 23:2416–2417
61.
Zurück zum Zitat Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO 3 - /I-. J Phys Chem B 109:16052–16061CrossRef Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO 3 - /I-. J Phys Chem B 109:16052–16061CrossRef
62.
Zurück zum Zitat Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO 3 - /I- shuttle redox mediator. Chem Phys Lett 452:120–123CrossRef Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO 3 - /I- shuttle redox mediator. Chem Phys Lett 452:120–123CrossRef
63.
Zurück zum Zitat Abe R, Takata T, Sugihara H, Domenb K (2005) Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 −/I− shuttle redox mediator. Chem Commun 3829–3831 Abe R, Takata T, Sugihara H, Domenb K (2005) Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem Commun 3829–3831
64.
Zurück zum Zitat Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868CrossRef Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868CrossRef
65.
Zurück zum Zitat Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33:1348–1349CrossRef Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33:1348–1349CrossRef
66.
Zurück zum Zitat Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542CrossRef Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542CrossRef
67.
Zurück zum Zitat Gratzel M (1999) The artificial leaf, bio-mimetic photocatalysis. Cattech 3:4–17 Gratzel M (1999) The artificial leaf, bio-mimetic photocatalysis. Cattech 3:4–17
68.
69.
Zurück zum Zitat Abe R, Shinmei K, Hara K, Ohtania B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 24:3577–3579 Abe R, Shinmei K, Hara K, Ohtania B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 24:3577–3579
70.
Zurück zum Zitat Hagiwara H, Ono N, Inoue T, Matsumoto H, Ishihara T (2006) Dye-sensitizer effects on a Pt/KTa(Zr)O3 catalyst for the photocatalytic splitting of water. Angew Chem Int Ed 45:1420–1422CrossRef Hagiwara H, Ono N, Inoue T, Matsumoto H, Ishihara T (2006) Dye-sensitizer effects on a Pt/KTa(Zr)O3 catalyst for the photocatalytic splitting of water. Angew Chem Int Ed 45:1420–1422CrossRef
71.
Zurück zum Zitat Hagiwara H, Inoue T, Kaneko K, Ishihara T (2009) Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem Eur J 15:12862–12870CrossRef Hagiwara H, Inoue T, Kaneko K, Ishihara T (2009) Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem Eur J 15:12862–12870CrossRef
72.
Zurück zum Zitat Hagiwara H, Watanabe M, Daio T, Ida S, Ishihara T (2014) Modification effects of meso-hexakis(pentafluorophenyl)[26] hexaphyrin aggregates on the photocatalytic water splitting. Chem Commun 50:12515–12518 Hagiwara H, Watanabe M, Daio T, Ida S, Ishihara T (2014) Modification effects of meso-hexakis(pentafluorophenyl)[26] hexaphyrin aggregates on the photocatalytic water splitting. Chem Commun 50:12515–12518
73.
Zurück zum Zitat Zhang Y, Mao F, Yan H, Liu K, Cao H, Wua J, Xiao D (2015) A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production. J Mater Chem A 3:109–115CrossRef Zhang Y, Mao F, Yan H, Liu K, Cao H, Wua J, Xiao D (2015) A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production. J Mater Chem A 3:109–115CrossRef
74.
Zurück zum Zitat Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057CrossRef Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057CrossRef
75.
Zurück zum Zitat Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583CrossRef Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583CrossRef
Metadaten
Titel
Photocatalytic Water Splitting
verfasst von
Aleksandar Staykov
Stephen M. Lyth
Motonori Watanabe
Copyright-Jahr
2016
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56042-5_12