Skip to main content

2020 | OriginalPaper | Buchkapitel

Physical, Morphological, Structural, Thermal and Mechanical Properties of Pineapple Leaf Fibers

verfasst von : C. H. Lee, A. Khalina, S. H. Lee, F. N. M. Padzil, Z. M. A. Ainun

Erschienen in: Pineapple Leaf Fibers

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural fibers have drawn significant attention globally for its adverse effect on the environment, lower cost and superior performance. Leaf or hard fibers are tough plant fibers, extracted from leaves of a monocotyledonous plant which has parallel-veined leaves. Pineapple leaf fibers (PALFs) are usually disposed of with an extremely low value due to lack of adequate skills. With a suitable platform, it can be fully utilized. PALF was found to be very high in cellulose contents which contribute to high strength performance. However, various factors make it perform differently. The changes in density and diameter of PALF had been found closely related to its strength. Apart from this, surface morphology of PALF reviewed that the location of leaf fiber and surface conditions provided various interlocking quality and optimum applications. On the other hand, PALF treatment observed better strength properties with evidence under infrared spectroscopy. The nanofibrils PALF from acid hydrolysis treatment provided better adhesion force and higher crystallinity index but high hydrophilicity verified by high moisture absorptions. Higher crystallinity index provided the fiber a good strength performance and an excellent spinnability, which allows it to be used in yarn and textile industries. On the contrary, high cellulose content of PALF has a promising fire-retardant behavior. PALF has a high potential for advanced material substitutions. Unfortunately, underutilized PALF is only disposed of as landfills and low-cost feedstock. The development and utilization of PALF could be the solution for the disposal problem as well as to increase the national income of a country.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Balakrishnan P, Sreekala MS, Kunaver M, Huskic M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym, 169, 176–188. https://doi.org/10.1016/j.carbpol.2017.04.017 Balakrishnan P, Sreekala MS, Kunaver M, Huskic M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym, 169, 176–188. https://​doi.​org/​10.​1016/​j.​carbpol.​2017.​04.​017
7.
Zurück zum Zitat Bartholomew D, Paull R, Rohrbach DP (2003) The pineapple: botany, production and uses. CABI Publishing, WallingfordCrossRef Bartholomew D, Paull R, Rohrbach DP (2003) The pineapple: botany, production and uses. CABI Publishing, WallingfordCrossRef
34.
Zurück zum Zitat Leão AL, Cherian BM, Narine S, Souza SF, Sain M, Thomas S (2015) 7—The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Woodhead Publishing, pp 211–235. https://doi.org/10.1533/9781782421276.2.211 Leão AL, Cherian BM, Narine S, Souza SF, Sain M, Thomas S (2015) 7—The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Woodhead Publishing, pp 211–235. https://​doi.​org/​10.​1533/​9781782421276.​2.​211
37.
Zurück zum Zitat Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28CrossRef Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28CrossRef
40.
Zurück zum Zitat Mecánica I, Jaramillo N, Hoyos D, Santa J (2016) Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingeniería y competitividad 18 Mecánica I, Jaramillo N, Hoyos D, Santa J (2016) Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingeniería y competitividad 18
41.
Zurück zum Zitat Mittal M, Chaudhary R (2018) Experimental study on the water absorption and surface characteristics of alkali treated pineapple leaf fibre and coconut husk fibre. Int J Appl Eng Res 13.15 (2018): 12237–12243 Mittal M, Chaudhary R (2018) Experimental study on the water absorption and surface characteristics of alkali treated pineapple leaf fibre and coconut husk fibre. Int J Appl Eng Res 13.15 (2018): 12237–12243
42.
Zurück zum Zitat Mohamed AR, Sapuan SM, Shahjahan M, Khalina A (2009) Characterization of pineapple leaf fibers from selected Malaysian cultivars. J Food Agric Environ 7(1):235–240 Mohamed AR, Sapuan SM, Shahjahan M, Khalina A (2009) Characterization of pineapple leaf fibers from selected Malaysian cultivars. J Food Agric Environ 7(1):235–240
45.
Zurück zum Zitat Mwaikambo L (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7(2):120–133 Mwaikambo L (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7(2):120–133
46.
Zurück zum Zitat Ndungu S (2014) A report on conventional pineapple production in Kenya Swedish Society for Nature Conservation (SSNC), Sweden Ndungu S (2014) A report on conventional pineapple production in Kenya Swedish Society for Nature Conservation (SSNC), Sweden
49.
Zurück zum Zitat Oliveira Glória G, Altoe G, Amoy Netto P, Margem F, de Oliveira Braga F, Neves Monteiro S (2016) Density Weibull analysis of pineapple leaf fibers (PALF) with different diameters. Mater Sci Forum 869. www.scientific.net/MSF.869.384 Oliveira Glória G, Altoe G, Amoy Netto P, Margem F, de Oliveira Braga F, Neves Monteiro S (2016) Density Weibull analysis of pineapple leaf fibers (PALF) with different diameters. Mater Sci Forum 869. www.​scientific.​net/​MSF.​869.​384
57.
Zurück zum Zitat Prado KdSd, Spinacé MAdS (2015) Characterization of fibers from pineapple’s crown, rice husks and cotton textile residues. Mater Res 18:530–537CrossRef Prado KdSd, Spinacé MAdS (2015) Characterization of fibers from pineapple’s crown, rice husks and cotton textile residues. Mater Res 18:530–537CrossRef
58.
Zurück zum Zitat Py C, Lacoeuilhe JJ, Teisson C (1987) The pineapple: cultivation and uses. Maisonneuve & Larose, Paris Py C, Lacoeuilhe JJ, Teisson C (1987) The pineapple: cultivation and uses. Maisonneuve & Larose, Paris
60.
Zurück zum Zitat Ramos Cassellis M, Sánchez-Pardo M, López MR, Mora-Escobedo R (2014) Structural, physicochemical and functional properties of industrial residues of pineapple (Ananas comosus). Cell Chem Technol, 48, 633–641 Ramos Cassellis M, Sánchez-Pardo M, López MR, Mora-Escobedo R (2014) Structural, physicochemical and functional properties of industrial residues of pineapple (Ananas comosus). Cell Chem Technol, 48, 633–641
64.
Zurück zum Zitat Roque R, Muñoz-Acosta F, Roy Soto F, Mata-Segreda J (2013) An anatomical comparison between bunch and fruit of oil palm with pineapple leaf and three woods from plantations in costa rica. J Oil Palm Res 25 Roque R, Muñoz-Acosta F, Roy Soto F, Mata-Segreda J (2013) An anatomical comparison between bunch and fruit of oil palm with pineapple leaf and three woods from plantations in costa rica. J Oil Palm Res 25
66.
Zurück zum Zitat Samal RK, Ray MC (1997) Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). J Appl Polym Sci 64(11):2119–2125 Samal RK, Ray MC (1997) Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). J Appl Polym Sci 64(11):2119–2125
77.
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5(2) Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5(2)
78.
Zurück zum Zitat Siregar J, Sapuan S, Ab Rahman MZ, Mohd Dahlan KZH (2011) Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika J Sci Technol 19(1):161–170 Siregar J, Sapuan S, Ab Rahman MZ, Mohd Dahlan KZH (2011) Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika J Sci Technol 19(1):161–170
79.
Zurück zum Zitat Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, Monteiro SN (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18:185–192CrossRef Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, Monteiro SN (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18:185–192CrossRef
84.
Zurück zum Zitat Yusof Y, bin Mat Nawi N, Bin Alias MSH (2016) Pineapple leaf fiber and pineapple peduncle fiber analyzing and characterization for yarn production. ARPN J Eng Appl Sci 11 Yusof Y, bin Mat Nawi N, Bin Alias MSH (2016) Pineapple leaf fiber and pineapple peduncle fiber analyzing and characterization for yarn production. ARPN J Eng Appl Sci 11
87.
Zurück zum Zitat Zin MH, Abdan K, Mazlan N, Zainudin ES, Liew KE (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Ser Mater Sci Eng 368(1):012035CrossRef Zin MH, Abdan K, Mazlan N, Zainudin ES, Liew KE (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Ser Mater Sci Eng 368(1):012035CrossRef
Metadaten
Titel
Physical, Morphological, Structural, Thermal and Mechanical Properties of Pineapple Leaf Fibers
verfasst von
C. H. Lee
A. Khalina
S. H. Lee
F. N. M. Padzil
Z. M. A. Ainun
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1416-6_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.