Skip to main content

2021 | OriginalPaper | Buchkapitel

Piezo-Resistive Pressure and Strain Sensors for Biomedical and Tele-Manipulation Applications

verfasst von : Bilel Ben Atitallah, Dhivakar Rajendran, Zheng Hu, Rajarajan Ramalingame, Roberto Bautista Quijano Jose, Renato da Veiga Torres, Dhouha Bouchaala, Nabil Derbel, Olfa Kanoun

Erschienen in: Advanced Sensors for Biomedical Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, the demand for flexible and wearable devices is significantly increasing. Thereby, sensors based on carbon materials are gaining importance due to their high flexibility, sensitivity and medical compatibility. Precisely, nanocomposite based pressure and strain sensors present an interesting potential of applied force detection that helps to build the basis for body attached sensor networks. These sensor principles based on polymer carbon nanotubes composites (PCN) will have the capability for tracking finger movements, gestures and grasping. Therefore, several studies are explored in hand muscle rehabilitation, sign communication and robotic telemanipulation. This chapter reviews developed carbon materials sensors and integrated solutions for hand gestures/forces detection in the biomedical application and robotic telemanipulation. In this context, a novel PCN strain and pressure sensors were presented and investigated. An SBS (styrene-butadiene-styrene rubber)/C-TPU (conductive thermoplastic urethane) strain sensor with 1 mm as the diameter is developed. The proposed sensor shows promising sensitivity and stretchability performances with up to 50% of strain and gauge factor equal to 24. In the other part, Poly-Dimethylsiloxane (PDMS)/Multiwalled carbon nanotubes (MWCNTs) pressure sensors are investigated. The results demonstrate excellent sensing performance e.g. fast response to detect low pressure, high durability after 100 cyclic loading/unloading test and high sensitivity up to 670 kPa. Moreover, a hybrid hand motion detection system was implemented for hand rehabilitation and gestures detection. The proposed sensors were attached to a glove that leads to the monitoring of fingers’ movements and the palm pressure distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 8(5), 5154–5163.CrossRef Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 8(5), 5154–5163.CrossRef
Zurück zum Zitat Atitallah, B. B., Ramalingame, R., Derbel, N., & Kanoun, O. (2019). Muscle movement tracking using nanocomposite based pressure sensor. In 2019 16th International Multi-conference on Systems, Signals & Devices (SSD) (pp. 483–488). IEEE. Atitallah, B. B., Ramalingame, R., Derbel, N., & Kanoun, O. (2019). Muscle movement tracking using nanocomposite based pressure sensor. In 2019 16th International Multi-conference on Systems, Signals & Devices (SSD) (pp. 483–488). IEEE.
Zurück zum Zitat Bautista-Quijano, J., Aviles, F., & Cauich-Rodriguez, J. (2013). Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites. Journal of Applied Polymer Science, 130(1), 375–382.CrossRef Bautista-Quijano, J., Aviles, F., & Cauich-Rodriguez, J. (2013). Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites. Journal of Applied Polymer Science, 130(1), 375–382.CrossRef
Zurück zum Zitat Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., et al. (2002). Virtual reality-based post-stroke hand rehabilitation. Studies in health technology and informatics (pp. 64–70). Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., et al. (2002). Virtual reality-based post-stroke hand rehabilitation. Studies in health technology and informatics (pp. 64–70).
Zurück zum Zitat Dinh, T., Nguyen, T.-K., Phan, H.-P., Fastier-Wooller, J., Tran, C.-D., Nguyen, N.-T., et al. (2018). Electrical resistance of carbon nanotube yarns under compressive transverse pressure. IEEE Electron Device Letters, 39(4), 584–587.CrossRef Dinh, T., Nguyen, T.-K., Phan, H.-P., Fastier-Wooller, J., Tran, C.-D., Nguyen, N.-T., et al. (2018). Electrical resistance of carbon nanotube yarns under compressive transverse pressure. IEEE Electron Device Letters, 39(4), 584–587.CrossRef
Zurück zum Zitat Dinh, T. N., Sowade, E., Arreba, A., Belau, R., Blaudeck, T., Baumann, R. R., et al. (2011). Performance of liquid-deposited multiwalled carbon nanotube films under strain. Printing Future Days, 109–115. Dinh, T. N., Sowade, E., Arreba, A., Belau, R., Blaudeck, T., Baumann, R. R., et al. (2011). Performance of liquid-deposited multiwalled carbon nanotube films under strain. Printing Future Days, 109–115.
Zurück zum Zitat Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C., et al. (2008). Handcare: A cable-actuated rehabilitation system to train hand function after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 582–591.CrossRef Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C., et al. (2008). Handcare: A cable-actuated rehabilitation system to train hand function after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 582–591.CrossRef
Zurück zum Zitat Ergen, H. I., & Oksuz, C. (2019). Evaluation of load distributions and contact areas in 4 common grip types used in daily living activities. The Journal of Hand Surgery. Ergen, H. I., & Oksuz, C. (2019). Evaluation of load distributions and contact areas in 4 common grip types used in daily living activities. The Journal of Hand Surgery.
Zurück zum Zitat Gao, Y., Yu, G., Tan, J., & Xuan, F. (2018). Sandpaper-molded wearable pressure sensor for electronic skins. Sensors and Actuators A: Physical, 280, 205–209.CrossRef Gao, Y., Yu, G., Tan, J., & Xuan, F. (2018). Sandpaper-molded wearable pressure sensor for electronic skins. Sensors and Actuators A: Physical, 280, 205–209.CrossRef
Zurück zum Zitat Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., et al. (2010). Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon, 48(3), 680–687.CrossRef Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., et al. (2010). Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon, 48(3), 680–687.CrossRef
Zurück zum Zitat Hu, N., Karube, Y., Yan, C., Masuda, Z., & Fukunaga, H. (2008). Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13), 2929–2936.CrossRef Hu, N., Karube, Y., Yan, C., Masuda, Z., & Fukunaga, H. (2008). Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13), 2929–2936.CrossRef
Zurück zum Zitat Jung, Y., Shin, M. G., Tak, H. J., Jung, K. K., & Ko, J. S. (2018). Flexible pressure sensor made using PDMS containing carbon nanotubes. In 2018 IEEE Micro Electro Mechanical Systems (MEMS) (pp. 501–503). IEEE. Jung, Y., Shin, M. G., Tak, H. J., Jung, K. K., & Ko, J. S. (2018). Flexible pressure sensor made using PDMS containing carbon nanotubes. In 2018 IEEE Micro Electro Mechanical Systems (MEMS) (pp. 501–503). IEEE.
Zurück zum Zitat Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Bouhamed, A., Al-Hamry, A., et al. (2014). Potential of flexible carbon nanotube films for high performance strain and pressure sensors. Nanotechnology for Optics and Sensors (One Central (OCP)). Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Bouhamed, A., Al-Hamry, A., et al. (2014). Potential of flexible carbon nanotube films for high performance strain and pressure sensors. Nanotechnology for Optics and Sensors (One Central (OCP)).
Zurück zum Zitat Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors, 21(2), 341; 1–29. Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors, 21(2), 341; 1–29.
Zurück zum Zitat Karime, A., Al-Osman, H., Gueaieb, W., & El Saddik, A. (2011). E-glove: An electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients. In 2011 IEEE International Conference on Multimedia and Expo (pp. 1–6). IEEE. Karime, A., Al-Osman, H., Gueaieb, W., & El Saddik, A. (2011). E-glove: An electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients. In 2011 IEEE International Conference on Multimedia and Expo (pp. 1–6). IEEE.
Zurück zum Zitat Ko, J., Jee, S., Lee, J. H., & Kim, S. H. (2018). High durability conductive textile using MWCNT for motion sensing. Sensors and Actuators A: Physical, 274, 50–56.CrossRef Ko, J., Jee, S., Lee, J. H., & Kim, S. H. (2018). High durability conductive textile using MWCNT for motion sensing. Sensors and Actuators A: Physical, 274, 50–56.CrossRef
Zurück zum Zitat Ku-Herrera, J., Avilés, F., & Seidel, G. (2013). Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites. Smart Materials and Structures, 22(8). Ku-Herrera, J., Avilés, F., & Seidel, G. (2013). Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites. Smart Materials and Structures, 22(8).
Zurück zum Zitat Lenhoff, H. M., Wang, P. P., Greenberg, F., & Bellugi, U. (1997). Williams syndrome and the brain. Scientific American, 277(6), 68–73.CrossRef Lenhoff, H. M., Wang, P. P., Greenberg, F., & Bellugi, U. (1997). Williams syndrome and the brain. Scientific American, 277(6), 68–73.CrossRef
Zurück zum Zitat Liu, W., & Yan, C. (2018). Direct printing of stretchable elastomers for highly sensitive capillary pressure sensors. Sensors, 18(4), 1001.CrossRef Liu, W., & Yan, C. (2018). Direct printing of stretchable elastomers for highly sensitive capillary pressure sensors. Sensors, 18(4), 1001.CrossRef
Zurück zum Zitat Maddipatla, D., Narakathu, B. B., Ali, M. M., Chlaihawi, A. A., & Atashbar, M. Z. (2017). Development of a novel carbon nanotube based printed and flexible pressure sensor. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–4). IEEE. Maddipatla, D., Narakathu, B. B., Ali, M. M., Chlaihawi, A. A., & Atashbar, M. Z. (2017). Development of a novel carbon nanotube based printed and flexible pressure sensor. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–4). IEEE.
Zurück zum Zitat Mulas, M., Folgheraiter, M., & Gini, G. (2005). An emg-controlled exoskeleton for hand rehabilitation. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (pp. 371–374). IEEE. Mulas, M., Folgheraiter, M., & Gini, G. (2005). An emg-controlled exoskeleton for hand rehabilitation. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (pp. 371–374). IEEE.
Zurück zum Zitat Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315–322.CrossRef Park, S., Meeker, C., Weber, L. M., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robotics and Automation Letters, 4(2), 315–322.CrossRef
Zurück zum Zitat Pham, G. T., Park, Y.-B., Liang, Z., Zhang, C., & Wang, B. (2008). Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites Part B: Engineering, 39(1), 209–216.CrossRef Pham, G. T., Park, Y.-B., Liang, Z., Zhang, C., & Wang, B. (2008). Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites Part B: Engineering, 39(1), 209–216.CrossRef
Zurück zum Zitat Pyo, S., Jo, E., Kwon, D.-S., Kim, W., Chang, W., & Kim, J. (2017). Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 962–965). IEEE. Pyo, S., Jo, E., Kwon, D.-S., Kim, W., Chang, W., & Kim, J. (2017). Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 962–965). IEEE.
Zurück zum Zitat Ramalingame, R., Chandraker, P., & Kanoun, O. (2017a). Investigation on the influence of solvents on MWCNT-PDMS nanocomposite pressure sensitive films. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 1, p. 384). Ramalingame, R., Chandraker, P., & Kanoun, O. (2017a). Investigation on the influence of solvents on MWCNT-PDMS nanocomposite pressure sensitive films. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 1, p. 384).
Zurück zum Zitat Ramalingame, R., Hu, Z., Gerlach, C., & Kanoun, O. (2017b). Shoe insole with MWCNT-PDMS-composite sensors for pressure monitoring. In 2017 IEEE SENSORS (pp. 1–3). IEEE. Ramalingame, R., Hu, Z., Gerlach, C., & Kanoun, O. (2017b). Shoe insole with MWCNT-PDMS-composite sensors for pressure monitoring. In 2017 IEEE SENSORS (pp. 1–3). IEEE.
Zurück zum Zitat Ramalingame, R., Hu, Z., Gerlach, C., Rajendran, D., Zubkova, T., Baumann, R., et al. (2019). Flexible piezoresistive sensor matrix based on a carbon nanotube PDMS composite for dynamic pressure distribution measurement. Journal of Sensors and Sensor Systems, 8(1), 1.CrossRef Ramalingame, R., Hu, Z., Gerlach, C., Rajendran, D., Zubkova, T., Baumann, R., et al. (2019). Flexible piezoresistive sensor matrix based on a carbon nanotube PDMS composite for dynamic pressure distribution measurement. Journal of Sensors and Sensor Systems, 8(1), 1.CrossRef
Zurück zum Zitat Ramalingame, R., Torres, R., Hu, Z., Chandraker, P., & Kanoun, O. (2017c). Electrical impedance analysis on nanocomposite based pressure and strain sensor. In 10th International Workshop on Impedance Spectroscopy (IWIS) (pp. 102–103). Ramalingame, R., Torres, R., Hu, Z., Chandraker, P., & Kanoun, O. (2017c). Electrical impedance analysis on nanocomposite based pressure and strain sensor. In 10th International Workshop on Impedance Spectroscopy (IWIS) (pp. 102–103).
Zurück zum Zitat Stilli, A., Cremoni, A., Bianchi, M., Ridolfi, A., Gerii, F., Vannetti, F., et al. (2018). Airexglove-a novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) (pp. 579–584). IEEE. Stilli, A., Cremoni, A., Bianchi, M., Ridolfi, A., Gerii, F., Vannetti, F., et al. (2018). Airexglove-a novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) (pp. 579–584). IEEE.
Zurück zum Zitat Tang, Z., Jia, S., Wang, F., Bian, C., Chen, Y., Wang, Y., et al. (2018). Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Applied Materials & Interfaces, 10(7), 6624–6635.CrossRef Tang, Z., Jia, S., Wang, F., Bian, C., Chen, Y., Wang, Y., et al. (2018). Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Applied Materials & Interfaces, 10(7), 6624–6635.CrossRef
Zurück zum Zitat Torres, R., Cheng, Z., Ramalingame, R., & Kanoun, O. (2018). Electrical characterization of elongation sensors based on SBS-CTPU filaments. In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 1212–1215). IEEE. Torres, R., Cheng, Z., Ramalingame, R., & Kanoun, O. (2018). Electrical characterization of elongation sensors based on SBS-CTPU filaments. In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 1212–1215). IEEE.
Zurück zum Zitat Wajahat, M., Lee, S., Kim, J. H., Chang, W. S., Pyo, J., Cho, S. H., et al. (2018). Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites. ACS Applied Materials & Interfaces, 10(23), 19999–20005.CrossRef Wajahat, M., Lee, S., Kim, J. H., Chang, W. S., Pyo, J., Cho, S. H., et al. (2018). Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites. ACS Applied Materials & Interfaces, 10(23), 19999–20005.CrossRef
Zurück zum Zitat Wang, Z., & Ye, X. (2013). A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology, 24(26). Wang, Z., & Ye, X. (2013). A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology, 24(26).
Zurück zum Zitat Williams, R., Farquharson, L., Palmer, L., Bassett, P., Clarke, J., Clark, D. M., et al. (2016). Patient preference in psychological treatment and associations with self-reported outcome: national cross-sectional survey in England and wales. BMC Psychiatry, 16(1), 4.CrossRef Williams, R., Farquharson, L., Palmer, L., Bassett, P., Clarke, J., Clark, D. M., et al. (2016). Patient preference in psychological treatment and associations with self-reported outcome: national cross-sectional survey in England and wales. BMC Psychiatry, 16(1), 4.CrossRef
Zurück zum Zitat Woo, S.-J., Kong, J.-H., Kim, D.-G., & Kim, J.-M. (2014). A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. Journal of Materials Chemistry C, 2(22), 4415–4422.CrossRef Woo, S.-J., Kong, J.-H., Kim, D.-G., & Kim, J.-M. (2014). A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. Journal of Materials Chemistry C, 2(22), 4415–4422.CrossRef
Metadaten
Titel
Piezo-Resistive Pressure and Strain Sensors for Biomedical and Tele-Manipulation Applications
verfasst von
Bilel Ben Atitallah
Dhivakar Rajendran
Zheng Hu
Rajarajan Ramalingame
Roberto Bautista Quijano Jose
Renato da Veiga Torres
Dhouha Bouchaala
Nabil Derbel
Olfa Kanoun
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-71225-9_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.