Skip to main content

2018 | OriginalPaper | Buchkapitel

Pineapple Leaf Fiber: From Waste to High-Performance Green Reinforcement for Plastics and Rubbers

verfasst von : Nanthaya Kengkhetkit, Thapanee Wongpreedee, Taweechai Amornsakchai

Erschienen in: Lignocellulosic Composite Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various kinds of plant natural fibers have been studied. Many of these are purposely grown for the fiber while some are derived from agricultural waste. A few types of plant natural fibers have been produced on a commercial scale. With various current problems facing us all today, the needs of plant natural fibers are even greater. There remains some fiber containing agricultural wastes which are underutilized. One of these is pineapple leaf waste. Pineapple leaf fiber (PALF) is known to possess high mechanical properties and can be obtained from pineapple leaf waste using different extraction methods. However, most of these methods are not suitable for large-scale production of the fiber for industrial uses. In addition, PALF produced with these methods is normally large in size, and this limits its applications. Recently, a novel method for the extraction of PALF has been presented. The method allows short and fine PALF to be produced. This PALF has diameter as small as 3 μm and with a cut length of 6 mm, the aspect ratio (length to diameter ratio) could be up to 2000. These characteristics make this PALF very suitable for the effective reinforcement of both plastics and rubbers. It will be demonstrated how to best utilize this PALF. This PALF could be surface treated or used in conjunction with compatibilizer or adhesion promoter as in other cellulose fibers. Recent progress will be presented and potential applications will be reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effect of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRef Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effect of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRef
Zurück zum Zitat Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748CrossRef Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748CrossRef
Zurück zum Zitat George J, Bhagawan SS, Prabhakaran N, Thomas S (1995) Short pineapple leaf fiber reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854CrossRef George J, Bhagawan SS, Prabhakaran N, Thomas S (1995) Short pineapple leaf fiber reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854CrossRef
Zurück zum Zitat Kaewpirom S, Worrarat C (2014) Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composites. Fiber Polym 15:1469–1477CrossRef Kaewpirom S, Worrarat C (2014) Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composites. Fiber Polym 15:1469–1477CrossRef
Zurück zum Zitat Kalapakdee A, Amornsakchai T (2014) Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: Effects of fiber content and matrix orientation. Polym Test 37:36–44CrossRef Kalapakdee A, Amornsakchai T (2014) Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: Effects of fiber content and matrix orientation. Polym Test 37:36–44CrossRef
Zurück zum Zitat Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef
Zurück zum Zitat Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483CrossRef Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483CrossRef
Zurück zum Zitat Kengkhetkit N (2014) Novel preparation and surface modifications of short pineapple leaf fiber for reinforcement of polypropylene. Ph. D. thesis, Faculty of Graduate Studies, Mahidol University, Thailand Kengkhetkit N (2014) Novel preparation and surface modifications of short pineapple leaf fiber for reinforcement of polypropylene. Ph. D. thesis, Faculty of Graduate Studies, Mahidol University, Thailand
Zurück zum Zitat Kengkhetkit N, Amornsakchai T (2012) Utilization of pineapple leaf waste for plastic reinforcement: 1. A new extraction method for short pineapple leaf fiber. Ind Crops Prod 40:55–61CrossRef Kengkhetkit N, Amornsakchai T (2012) Utilization of pineapple leaf waste for plastic reinforcement: 1. A new extraction method for short pineapple leaf fiber. Ind Crops Prod 40:55–61CrossRef
Zurück zum Zitat Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des 55:292–299CrossRef Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des 55:292–299CrossRef
Zurück zum Zitat Leao AL, Cherian BM, Narine S, Souza SF, Sain M, Thomas S (2015) In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Elsevier, UK Leao AL, Cherian BM, Narine S, Souza SF, Sain M, Thomas S (2015) In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Elsevier, UK
Zurück zum Zitat Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J App Polym Sci 102:1974–1984CrossRef Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J App Polym Sci 102:1974–1984CrossRef
Zurück zum Zitat Lopattananon N, Jitkalong D, Seadan M (2011) Hybridized reinforcement of natural rubber with silane-modified short cellulose fibers and silica. J Appl Polym Sci 120:3242–3254CrossRef Lopattananon N, Jitkalong D, Seadan M (2011) Hybridized reinforcement of natural rubber with silane-modified short cellulose fibers and silica. J Appl Polym Sci 120:3242–3254CrossRef
Zurück zum Zitat Lopez-Manchado MA, Arroyo M (2002) Short fibers as reinforcement of rubber compounds. Polym Compos 23:666–673CrossRef Lopez-Manchado MA, Arroyo M (2002) Short fibers as reinforcement of rubber compounds. Polym Compos 23:666–673CrossRef
Zurück zum Zitat Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378CrossRef Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378CrossRef
Zurück zum Zitat Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
Zurück zum Zitat Nopparut A, Amornsakchai T (2016) Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polym Test 52:141–149CrossRef Nopparut A, Amornsakchai T (2016) Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polym Test 52:141–149CrossRef
Zurück zum Zitat Panyasart K, Chaiyut N, Amornsakchai T, Santawitee O (2014) Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–413CrossRef Panyasart K, Chaiyut N, Amornsakchai T, Santawitee O (2014) Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–413CrossRef
Zurück zum Zitat Payae Y, Lopattananon N (2008) Adhesion of pineapple leaf fiber to epoxy matrix: the role of surface treatments. Songklanakarin J Sci Technol 31:189–194 Payae Y, Lopattananon N (2008) Adhesion of pineapple leaf fiber to epoxy matrix: the role of surface treatments. Songklanakarin J Sci Technol 31:189–194
Zurück zum Zitat Pittayavinai P, Thanawan S, Amornsakchai T (2016) Manipulation of mechanical properties of short pineapple leaf fiber reinforced natural rubber composites through variations in cross-link density and carbon black loading. Polym Test 54:84–89CrossRef Pittayavinai P, Thanawan S, Amornsakchai T (2016) Manipulation of mechanical properties of short pineapple leaf fiber reinforced natural rubber composites through variations in cross-link density and carbon black loading. Polym Test 54:84–89CrossRef
Zurück zum Zitat Prukkaewkanjana K, Thanawan S, Amornsakchai T (2015) High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polym Test 45:76–82CrossRef Prukkaewkanjana K, Thanawan S, Amornsakchai T (2015) High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polym Test 45:76–82CrossRef
Zurück zum Zitat Sapuan SM, Mohamed AR, Siregar JP, Ishak MR (2011) In: Kalia S et al (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, New York Sapuan SM, Mohamed AR, Siregar JP, Ishak MR (2011) In: Kalia S et al (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, New York
Zurück zum Zitat Satyanarayana KG, Pillai CKS, Pillai SGK, Sukumaran K (1982) Structure property studies of fibers from various parts of the coconut tree. J Mater Sci 17:2453–2462CrossRef Satyanarayana KG, Pillai CKS, Pillai SGK, Sukumaran K (1982) Structure property studies of fibers from various parts of the coconut tree. J Mater Sci 17:2453–2462CrossRef
Zurück zum Zitat Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos Part B-Eng 40:628–632CrossRef Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos Part B-Eng 40:628–632CrossRef
Zurück zum Zitat Wisittanawat U, Thanawan S, Amornsakchai T (2014a) Mechanical properties of highly aligned short pineapple leaf fiber reinforced - Nitrile rubber composite: Effect of fiber content and bonding agent. Polym Test 35:20–27CrossRef Wisittanawat U, Thanawan S, Amornsakchai T (2014a) Mechanical properties of highly aligned short pineapple leaf fiber reinforced - Nitrile rubber composite: Effect of fiber content and bonding agent. Polym Test 35:20–27CrossRef
Zurück zum Zitat Wisittanawat U, Thanawan S, Amornsakchai T (2014b) Remarkable improvement of failure strain of preferentially aligned short pineapple leaf fiber reinforced nitrile rubber composites with silica hybridization. Polym Test 38:91–99CrossRef Wisittanawat U, Thanawan S, Amornsakchai T (2014b) Remarkable improvement of failure strain of preferentially aligned short pineapple leaf fiber reinforced nitrile rubber composites with silica hybridization. Polym Test 38:91–99CrossRef
Zurück zum Zitat Wongpreedee T, Amornsakchai T (2015) Synchrotron X-ray diffraction study of pineapple leaf fiber reinforced natural rubber composites during stretching. Suranaree J Sci Technol 22:253–263 Wongpreedee T, Amornsakchai T (2015) Synchrotron X-ray diffraction study of pineapple leaf fiber reinforced natural rubber composites during stretching. Suranaree J Sci Technol 22:253–263
Metadaten
Titel
Pineapple Leaf Fiber: From Waste to High-Performance Green Reinforcement for Plastics and Rubbers
verfasst von
Nanthaya Kengkhetkit
Thapanee Wongpreedee
Taweechai Amornsakchai
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68696-7_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.