Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Pipeline Health Monitoring Technology

verfasst von : Hongfang Lu, Zhao-Dong Xu, Tom Iseley, Haoyan Peng, Lingdi Fu

Erschienen in: Pipeline Inspection and Health Monitoring Technology

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different from pipeline inspection, monitoring refers to real-time monitoring of the same object for a long time and mastering its change law. In addition, monitoring has certain timeliness, primarily referring to on-site sampling and monitoring. In pipeline engineering, monitoring usually needs to rely on the long-term installation of sensing equipment on the pipeline and real-time data collection to identify the health status of the pipeline. This chapter introduces common pipeline monitoring methods, including software-based and hardware-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu, H., Iseley, T., Behbahani, S., & Fu, L. (2020). Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunnelling and Underground Space Technology, 98, 103249. Lu, H., Iseley, T., Behbahani, S., & Fu, L. (2020). Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunnelling and Underground Space Technology, 98, 103249.
2.
Zurück zum Zitat Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., & Ohodnicki, P. R. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302.CrossRef Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., & Ohodnicki, P. R. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302.CrossRef
3.
Zurück zum Zitat Barrias, A., Casas, J. R., & Villalba, S. (2016). A review of distributed optical fiber sensors for civil engineering applications. Sensors, 16(5), 748.CrossRef Barrias, A., Casas, J. R., & Villalba, S. (2016). A review of distributed optical fiber sensors for civil engineering applications. Sensors, 16(5), 748.CrossRef
4.
Zurück zum Zitat Ren, L., Jiang, T., Jia, Z. G., Li, D. S., Yuan, C. L., & Li, H. N. (2018). Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement, 122, 57–65.CrossRef Ren, L., Jiang, T., Jia, Z. G., Li, D. S., Yuan, C. L., & Li, H. N. (2018). Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement, 122, 57–65.CrossRef
5.
Zurück zum Zitat Maraval, D., Gabet, R., Jaouen, Y., & Lamour, V. (2016). Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: Application to pipeline vibration monitoring. Journal of Lightwave Technology, 35(16), 3296–3302.CrossRef Maraval, D., Gabet, R., Jaouen, Y., & Lamour, V. (2016). Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: Application to pipeline vibration monitoring. Journal of Lightwave Technology, 35(16), 3296–3302.CrossRef
6.
Zurück zum Zitat Rogers, A. J. (1991, September). Distributed optical fiber sensing. In Chemical and medical sensors (Vol. 1510, pp. 2–24). SPIE. Rogers, A. J. (1991, September). Distributed optical fiber sensing. In Chemical and medical sensors (Vol. 1510, pp. 2–24). SPIE.
7.
Zurück zum Zitat Shatalin, S. V., Treschikov, V. N., & Rogers, A. J. (1998). Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Applied Optics, 37(24), 5600–5604.CrossRef Shatalin, S. V., Treschikov, V. N., & Rogers, A. J. (1998). Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Applied Optics, 37(24), 5600–5604.CrossRef
8.
Zurück zum Zitat Zhang, W., Wu, Q., Zhang, Z., Tian, Y., Yang, Y., Xu, X., Ma, J., & Li, J. (2022). Application of distributed optical fiber pipeline monitoring technology in long-distance water conveyance project. Water & Wastewater Engineering, 48(6), 124–129. Zhang, W., Wu, Q., Zhang, Z., Tian, Y., Yang, Y., Xu, X., Ma, J., & Li, J. (2022). Application of distributed optical fiber pipeline monitoring technology in long-distance water conveyance project. Water & Wastewater Engineering, 48(6), 124–129.
9.
Zurück zum Zitat Li, J., Zhou, X., Yin, Z., Wang, C., Xu, Y., Zhang, J., & Zhang, M. (2021). Reconstruction compression correlation demodulation for Raman optical time domain reflection. Advanced Photonics Research, 2(10), 2100047.CrossRef Li, J., Zhou, X., Yin, Z., Wang, C., Xu, Y., Zhang, J., & Zhang, M. (2021). Reconstruction compression correlation demodulation for Raman optical time domain reflection. Advanced Photonics Research, 2(10), 2100047.CrossRef
10.
Zurück zum Zitat Takada, K., Himeno, A., & Yukimatsu, K. (1991). Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry. Applied Physics Letters, 59(20), 2483–2485.CrossRef Takada, K., Himeno, A., & Yukimatsu, K. (1991). Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry. Applied Physics Letters, 59(20), 2483–2485.CrossRef
11.
Zurück zum Zitat Breteler, R. F. K., Van der Tol, J. J., Felicetti, M., Sasbrink, B., & Smit, M. K. (2011). Photonic integrated Brillouin optical time domain reflection readout unit. Optical Engineering, 50(7), 071111.CrossRef Breteler, R. F. K., Van der Tol, J. J., Felicetti, M., Sasbrink, B., & Smit, M. K. (2011). Photonic integrated Brillouin optical time domain reflection readout unit. Optical Engineering, 50(7), 071111.CrossRef
12.
Zurück zum Zitat Tateda, M., & Horiguchi, T. (1989). Advances in optical time domain reflectometry. Journal of Lightwave Technology, 7(8), 1217–1224.CrossRef Tateda, M., & Horiguchi, T. (1989). Advances in optical time domain reflectometry. Journal of Lightwave Technology, 7(8), 1217–1224.CrossRef
13.
Zurück zum Zitat Klein Breteler, R. F., van der Tol, J. J. G. M., Felicetti, M., Sasbrink, G. D. J., & Smit, M. K. (2011). Photonic integrated Brillouin optical time domain reflection readout unit. Optical Engineering, 50(7), 07111–1.CrossRef Klein Breteler, R. F., van der Tol, J. J. G. M., Felicetti, M., Sasbrink, G. D. J., & Smit, M. K. (2011). Photonic integrated Brillouin optical time domain reflection readout unit. Optical Engineering, 50(7), 07111–1.CrossRef
14.
Zurück zum Zitat Froggatt, M., & Bowen, W. (1998). Optical time-domain reflectometry in optical fiber with reflection delay time matched to the period of the optical frequency modulation. Applied Optics, 37(10), 1731–1734.CrossRef Froggatt, M., & Bowen, W. (1998). Optical time-domain reflectometry in optical fiber with reflection delay time matched to the period of the optical frequency modulation. Applied Optics, 37(10), 1731–1734.CrossRef
15.
Zurück zum Zitat Barnoski, M., Rourke, M., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375–2379.CrossRef Barnoski, M., Rourke, M., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375–2379.CrossRef
16.
Zurück zum Zitat Feng, N. N., & Huang, W. P. (2004). An efficient computation scheme for time-domain reflection at optical waveguide discontinuities. IEEE Photonics Technology Letters, 16(2), 461–463.CrossRef Feng, N. N., & Huang, W. P. (2004). An efficient computation scheme for time-domain reflection at optical waveguide discontinuities. IEEE Photonics Technology Letters, 16(2), 461–463.CrossRef
17.
Zurück zum Zitat Personick, S. D. (1977). Photon probe—An optical-fiber time-domain reflectometer. The Bell System Technical Journal, 56(3), 355–366.CrossRef Personick, S. D. (1977). Photon probe—An optical-fiber time-domain reflectometer. The Bell System Technical Journal, 56(3), 355–366.CrossRef
18.
Zurück zum Zitat Huang, Z., & Liu, D. (2006). Optical fiber sensing technique for application in oil field. Chinese Journal Engineering Geophysics, 3(6), 473–477. Huang, Z., & Liu, D. (2006). Optical fiber sensing technique for application in oil field. Chinese Journal Engineering Geophysics, 3(6), 473–477.
19.
Zurück zum Zitat Allwood, G., Wild, G., & Hinckley, S. (2016). Optical fiber sensors in physical intrusion detection systems: A review. IEEE Sensors Journal, 16(14), 5497–5509. Allwood, G., Wild, G., & Hinckley, S. (2016). Optical fiber sensors in physical intrusion detection systems: A review. IEEE Sensors Journal, 16(14), 5497–5509.
20.
Zurück zum Zitat Qin, Z. (2013). Distributed optical fiber vibration sensor based on Rayleigh backscattering. University of Ottawa (Canada). Qin, Z. (2013). Distributed optical fiber vibration sensor based on Rayleigh backscattering. University of Ottawa (Canada).
21.
Zurück zum Zitat Bao, X., Dhliwayo, J., Heron, N., Webb, D. J., & Jackson, D. A. (1995). Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. Journal of Lightwave Technology, 13(7), 1340–1348.CrossRef Bao, X., Dhliwayo, J., Heron, N., Webb, D. J., & Jackson, D. A. (1995). Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. Journal of Lightwave Technology, 13(7), 1340–1348.CrossRef
22.
Zurück zum Zitat Glišić, B., Posenato, D., & Inaudi, D. (2007, April). Integrity monitoring of an old steel bridge using fiber optic distributed sensors based on Brillouin scattering. In Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security 2007 (Vol. 6531, pp. 210–217). SPIE. Glišić, B., Posenato, D., & Inaudi, D. (2007, April). Integrity monitoring of an old steel bridge using fiber optic distributed sensors based on Brillouin scattering. In Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security 2007 (Vol. 6531, pp. 210–217). SPIE.
23.
Zurück zum Zitat He, C., Hang, L., & Wu, B. (2006). Application of distributed optical fiber sensing technique in pipeline leak detection. Transducer and Microsystem Technologies, 25(9), 8–14. He, C., Hang, L., & Wu, B. (2006). Application of distributed optical fiber sensing technique in pipeline leak detection. Transducer and Microsystem Technologies, 25(9), 8–14.
24.
Zurück zum Zitat Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., & Koyamada, Y. (1995). Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 13(7), 1296–1302.CrossRef Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., & Koyamada, Y. (1995). Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 13(7), 1296–1302.CrossRef
25.
Zurück zum Zitat Jinno, M., & Matsumoto, T. (1992). Nonlinear Sagnac interferometer switch and its applications. IEEE Journal of Quantum Electronics, 28(4), 875–882.CrossRef Jinno, M., & Matsumoto, T. (1992). Nonlinear Sagnac interferometer switch and its applications. IEEE Journal of Quantum Electronics, 28(4), 875–882.CrossRef
26.
Zurück zum Zitat Dakin, J. P., Pratt, D. J., Bibby, G. W., & Ross, J. N. (1985). Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electronics Letters, 13(21), 569–570.CrossRef Dakin, J. P., Pratt, D. J., Bibby, G. W., & Ross, J. N. (1985). Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electronics Letters, 13(21), 569–570.CrossRef
27.
Zurück zum Zitat Bolognini, G., Park, J., Soto, M. A., Park, N., & Di Pasquale, F. (2007). Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Measurement Science and Technology, 18(10), 3211.CrossRef Bolognini, G., Park, J., Soto, M. A., Park, N., & Di Pasquale, F. (2007). Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Measurement Science and Technology, 18(10), 3211.CrossRef
28.
Zurück zum Zitat Othonos, A. (1997). Fiber Bragg gratings. Review of Scientific Instruments, 68(12), 4309–4341.CrossRef Othonos, A. (1997). Fiber Bragg gratings. Review of Scientific Instruments, 68(12), 4309–4341.CrossRef
29.
Zurück zum Zitat Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263–1276.CrossRef Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263–1276.CrossRef
30.
Zurück zum Zitat Chen, J., Liu, B., & Zhang, H. (2011). Review of fiber Bragg grating sensor technology. Frontiers of Optoelectronics in China, 4(2), 204–212.CrossRef Chen, J., Liu, B., & Zhang, H. (2011). Review of fiber Bragg grating sensor technology. Frontiers of Optoelectronics in China, 4(2), 204–212.CrossRef
31.
Zurück zum Zitat Liang, W., Huang, Y., Xu, Y., Lee, R. K., & Yariv, A. (2005). Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 86(15), 151122.CrossRef Liang, W., Huang, Y., Xu, Y., Lee, R. K., & Yariv, A. (2005). Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 86(15), 151122.CrossRef
32.
Zurück zum Zitat Giles, C. R. (1997). Lightwave applications of fiber Bragg gratings. Journal of Lightwave Technology, 15(8), 1391–1404.CrossRef Giles, C. R. (1997). Lightwave applications of fiber Bragg gratings. Journal of Lightwave Technology, 15(8), 1391–1404.CrossRef
33.
Zurück zum Zitat Mihailov, S. J. (2012). Fiber Bragg grating sensors for harsh environments. Sensors, 12(2), 1898–1918.CrossRef Mihailov, S. J. (2012). Fiber Bragg grating sensors for harsh environments. Sensors, 12(2), 1898–1918.CrossRef
34.
Zurück zum Zitat Perez, I. M., Cui, H., & Udd, E. (2001, August). Acoustic emission detection using fiber Bragg gratings. In Smart structures and materials 2001: Sensory phenomena and measurement instrumentation for smart structures and materials (Vol. 4328, pp. 209–215). SPIE. Perez, I. M., Cui, H., & Udd, E. (2001, August). Acoustic emission detection using fiber Bragg gratings. In Smart structures and materials 2001: Sensory phenomena and measurement instrumentation for smart structures and materials (Vol. 4328, pp. 209–215). SPIE.
35.
Zurück zum Zitat Chen, Z., Zhang, L., Wang, Z., & Liang, W. (2007). Method of leakage detection for gas pipelines based on distributed optic fiber sensors. Transducer and Microsystem Technologies, 26(7), 108–110. Chen, Z., Zhang, L., Wang, Z., & Liang, W. (2007). Method of leakage detection for gas pipelines based on distributed optic fiber sensors. Transducer and Microsystem Technologies, 26(7), 108–110.
36.
Zurück zum Zitat Erdogan, T., Mizrahi, V., Lemaire, P. J., & Monroe, D. (1994). Decay of ultraviolet-induced fiber Bragg gratings. Journal of Applied Physics, 76(1), 73–80.CrossRef Erdogan, T., Mizrahi, V., Lemaire, P. J., & Monroe, D. (1994). Decay of ultraviolet-induced fiber Bragg gratings. Journal of Applied Physics, 76(1), 73–80.CrossRef
37.
Zurück zum Zitat Starodumov, A. N., Zenteno, L. A., Monzon, D., & De La Rosa, E. (1997). Fiber Sagnac interferometer temperature sensor. Applied Physics Letters, 70(1), 19–21.CrossRef Starodumov, A. N., Zenteno, L. A., Monzon, D., & De La Rosa, E. (1997). Fiber Sagnac interferometer temperature sensor. Applied Physics Letters, 70(1), 19–21.CrossRef
38.
Zurück zum Zitat Liang, H., Sun, M., & Jin, Y. (2013). Twist sensor based on Sagnac single-mode optic fiber interferometer. Optik, 124(24), 6676–6678.CrossRef Liang, H., Sun, M., & Jin, Y. (2013). Twist sensor based on Sagnac single-mode optic fiber interferometer. Optik, 124(24), 6676–6678.CrossRef
39.
Zurück zum Zitat Kurmer, J. P., Kingsley, S. A., Laudo, J. S., & Krak, S. J. (1993, March). Applicability of a novel distributed fiber optic acoustic sensor for leak detection. In distributed and multiplexed fiber optic sensors II (Vol. 1797, pp. 63–71). SPIE. Kurmer, J. P., Kingsley, S. A., Laudo, J. S., & Krak, S. J. (1993, March). Applicability of a novel distributed fiber optic acoustic sensor for leak detection. In distributed and multiplexed fiber optic sensors II (Vol. 1797, pp. 63–71). SPIE.
40.
Zurück zum Zitat Hu, Z., Zhang, G., He, J., Zhang, L., & Zhou, J (2003). Leak detection on gas pipeline with the distributed fiber-optic sensing technology. Journal of Transducer Technology, 22(10), 48–53. Hu, Z., Zhang, G., He, J., Zhang, L., & Zhou, J (2003). Leak detection on gas pipeline with the distributed fiber-optic sensing technology. Journal of Transducer Technology, 22(10), 48–53.
41.
Zurück zum Zitat Sun, Q., Liu, D., Wang, J., & Liu, H. (2008). Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Optics Communications, 281(6), 1538–1544.CrossRef Sun, Q., Liu, D., Wang, J., & Liu, H. (2008). Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Optics Communications, 281(6), 1538–1544.CrossRef
42.
Zurück zum Zitat Lee, B. H., Kim, Y. H., Park, K. S., Eom, J. B., Kim, M. J., Rho, B. S., & Choi, H. Y. (2012). Interferometric fiber optic sensors. Sensors, 12(3), 2467–2486. Lee, B. H., Kim, Y. H., Park, K. S., Eom, J. B., Kim, M. J., Rho, B. S., & Choi, H. Y. (2012). Interferometric fiber optic sensors. Sensors, 12(3), 2467–2486.
43.
Zurück zum Zitat Zhou, Y., Jin, S., Zhang, Y., & Sun, L. (2005). Study on the distributed optical fiber sensing technology for pipeline leakage detection. Journal of Optoelectronics·Laser, 16(8), 935–938. Zhou, Y., Jin, S., Zhang, Y., & Sun, L. (2005). Study on the distributed optical fiber sensing technology for pipeline leakage detection. Journal of Optoelectronics·Laser, 16(8), 935–938.
44.
Zurück zum Zitat Kamenev, O. T., Kulchin, Y. N., Petrov, Y. S., Khiznyak, R. V., & Romashko, R. V. (2016). Fiber-optic seismometer on the basis of Mach-Zehnder interferometer. Sensors and Actuators A: Physical, 244, 133–137.CrossRef Kamenev, O. T., Kulchin, Y. N., Petrov, Y. S., Khiznyak, R. V., & Romashko, R. V. (2016). Fiber-optic seismometer on the basis of Mach-Zehnder interferometer. Sensors and Actuators A: Physical, 244, 133–137.CrossRef
45.
Zurück zum Zitat Yuan, Y., Cheng, Y., Yang, J., Zhang, H., Lu, D., Lv, Y., Peng, F., Li, H., Zhang, X., Jiang, F., & Yuan, L. (2017). Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer. Applied Optics, 56(31), 8732–8737. Yuan, Y., Cheng, Y., Yang, J., Zhang, H., Lu, D., Lv, Y., Peng, F., Li, H., Zhang, X., Jiang, F., & Yuan, L. (2017). Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer. Applied Optics, 56(31), 8732–8737.
46.
Zurück zum Zitat Kim, J. H. (2008). An all fiber white light interferometric absolute temperature measurement system. Sensors, 8(11), 6825–6845.CrossRef Kim, J. H. (2008). An all fiber white light interferometric absolute temperature measurement system. Sensors, 8(11), 6825–6845.CrossRef
47.
Zurück zum Zitat Stouffs, P., & Giot, M. (1993). Pipeline leak detection based on mass balance: Importance of the packing term. Journal of Loss Prevention in the Process Industries, 6(5), 307–312.CrossRef Stouffs, P., & Giot, M. (1993). Pipeline leak detection based on mass balance: Importance of the packing term. Journal of Loss Prevention in the Process Industries, 6(5), 307–312.CrossRef
48.
Zurück zum Zitat Sheltami, T. R., Bala, A., & Shakshuki, E. M. (2016). Wireless sensor networks for leak detection in pipelines: A survey. Journal of Ambient Intelligence and Humanized Computing, 7(3), 347–356.CrossRef Sheltami, T. R., Bala, A., & Shakshuki, E. M. (2016). Wireless sensor networks for leak detection in pipelines: A survey. Journal of Ambient Intelligence and Humanized Computing, 7(3), 347–356.CrossRef
49.
Zurück zum Zitat Boaz, L., Kaijage, S., & Sinde, R. (2014, July). An overview of pipeline leak detection and location systems. In Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014) (pp. 133–137). IEEE. Boaz, L., Kaijage, S., & Sinde, R. (2014, July). An overview of pipeline leak detection and location systems. In Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014) (pp. 133–137). IEEE.
50.
Zurück zum Zitat Sandberg, C., Holmes, J., McCoy, K., & Koppitsch, H. (1989). The application of a continuous leak detection system to pipelines and associated equipment. IEEE Transactions on Industry Applications, 25(5), 906–909. Sandberg, C., Holmes, J., McCoy, K., & Koppitsch, H. (1989). The application of a continuous leak detection system to pipelines and associated equipment. IEEE Transactions on Industry Applications, 25(5), 906–909.
51.
Zurück zum Zitat Zong, Z. (2009). The design of oil pipeline leak detection system. Master's Thesis, Harbin University of Science and Technology, China. Zong, Z. (2009). The design of oil pipeline leak detection system. Master's Thesis, Harbin University of Science and Technology, China.
52.
Zurück zum Zitat Lu, W., Liang, W., Zhang, L., & Liu, W. (2016). A novel noise reduction method applied in negative pressure wave for pipeline leakage localization. Process Safety and Environmental Protection, 104, 142–149.CrossRef Lu, W., Liang, W., Zhang, L., & Liu, W. (2016). A novel noise reduction method applied in negative pressure wave for pipeline leakage localization. Process Safety and Environmental Protection, 104, 142–149.CrossRef
53.
Zurück zum Zitat Li, J., Zheng, Q., Qian, Z., & Yang, X. (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, 123, 309–316.CrossRef Li, J., Zheng, Q., Qian, Z., & Yang, X. (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, 123, 309–316.CrossRef
54.
Zurück zum Zitat Ma, C., Yu, S., & Huo, J. (2010, August). Negative pressure wave-flow testing gas pipeline leak based on wavelet transform. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 5, pp. 306–308). IEEE. Ma, C., Yu, S., & Huo, J. (2010, August). Negative pressure wave-flow testing gas pipeline leak based on wavelet transform. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 5, pp. 306–308). IEEE.
55.
Zurück zum Zitat Chen, Q., Shen, G., Jiang, J., Diao, X., Wang, Z., Ni, L., & Dou, Z. (2018). Effect of rubber washers on leak location for assembled pressurized liquid pipeline based on negative pressure wave method. Process Safety and Environmental Protection, 119, 181–190.CrossRef Chen, Q., Shen, G., Jiang, J., Diao, X., Wang, Z., Ni, L., & Dou, Z. (2018). Effect of rubber washers on leak location for assembled pressurized liquid pipeline based on negative pressure wave method. Process Safety and Environmental Protection, 119, 181–190.CrossRef
56.
Zurück zum Zitat Wang, J., Zhao, L., Liu, T., Li, Z., Sun, T., & Grattan, K. T. (2016). Novel negative pressure wave-based pipeline leak detection system using fiber Bragg grating-based pressure sensors. Journal of Lightwave Technology, 35(16), 3366–3373.CrossRef Wang, J., Zhao, L., Liu, T., Li, Z., Sun, T., & Grattan, K. T. (2016). Novel negative pressure wave-based pipeline leak detection system using fiber Bragg grating-based pressure sensors. Journal of Lightwave Technology, 35(16), 3366–3373.CrossRef
57.
Zurück zum Zitat Liu, B., Jiang, Z., Nie, W., Ran, Y., & Lin, H. (2021). Research on leak location method of water supply pipeline based on negative pressure wave technology and VMD algorithm. Measurement, 186, 110235.CrossRef Liu, B., Jiang, Z., Nie, W., Ran, Y., & Lin, H. (2021). Research on leak location method of water supply pipeline based on negative pressure wave technology and VMD algorithm. Measurement, 186, 110235.CrossRef
58.
Zurück zum Zitat Yang, J., Qingxin, Y., & Guanghai, L. (2007, May). Leak identification method for buried gas pipeline based on spatial-temporal data fusion. In 2007 IEEE International Conference on Control and Automation (pp. 774–777). IEEE. Yang, J., Qingxin, Y., & Guanghai, L. (2007, May). Leak identification method for buried gas pipeline based on spatial-temporal data fusion. In 2007 IEEE International Conference on Control and Automation (pp. 774–777). IEEE.
59.
Zurück zum Zitat Wang, X., Huang, K., Zhi, X., Lu, Y., & Chi, H. (2008). Present stage of the development of oil-gas pipeline leak-detection technologies. Pipeline Technique and Equipment, 16, 24–26. Wang, X., Huang, K., Zhi, X., Lu, Y., & Chi, H. (2008). Present stage of the development of oil-gas pipeline leak-detection technologies. Pipeline Technique and Equipment, 16, 24–26.
60.
Zurück zum Zitat Wang, Z., Wang, H., Fu, L., Mu, S., & Wang, L. (2015). Pipeline detection method based on multiple-pressure sensor and negative pressure wave. Transducer and Microsystem Technologies, 34, 115–118. Wang, Z., Wang, H., Fu, L., Mu, S., & Wang, L. (2015). Pipeline detection method based on multiple-pressure sensor and negative pressure wave. Transducer and Microsystem Technologies, 34, 115–118.
61.
Zurück zum Zitat Zhang, T., Tan, Y., Zhang, X., & Zhao, J. (2015). A novel hybrid technique for leak detection and location in straight pipelines. Journal of Loss Prevention in the Process Industries, 35, 157–168.CrossRef Zhang, T., Tan, Y., Zhang, X., & Zhao, J. (2015). A novel hybrid technique for leak detection and location in straight pipelines. Journal of Loss Prevention in the Process Industries, 35, 157–168.CrossRef
62.
Zurück zum Zitat Jia, Z. G., Ren, L., Li, H. N., Ho, S. C., & Song, G. B. (2015). Experimental study of pipeline leak detection based on hoop strain measurement. Structural Control and Health Monitoring, 22(5), 799–812.CrossRef Jia, Z. G., Ren, L., Li, H. N., Ho, S. C., & Song, G. B. (2015). Experimental study of pipeline leak detection based on hoop strain measurement. Structural Control and Health Monitoring, 22(5), 799–812.CrossRef
63.
Zurück zum Zitat Liang, W., Zhang, L. B., & Wang, Z. H. (2004, January). State of research on negative pressure techniques applied to leak detection in liquid pipelines. In International Pipeline Conference (Vol. 41766, pp. 2261–2265). Liang, W., Zhang, L. B., & Wang, Z. H. (2004, January). State of research on negative pressure techniques applied to leak detection in liquid pipelines. In International Pipeline Conference (Vol. 41766, pp. 2261–2265).
64.
Zurück zum Zitat bin Md Akib, A., bin Saad, N., & Asirvadam, V. (2011, March). Pressure point analysis for early detection system. In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (pp. 103–107). IEEE. bin Md Akib, A., bin Saad, N., & Asirvadam, V. (2011, March). Pressure point analysis for early detection system. In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (pp. 103–107). IEEE.
65.
Zurück zum Zitat Fiedler, J. (2014). An overview of pipeline leak detection technologies. American School of Gas Measurement Technology (ASGMT), Peabody, MA, US. Fiedler, J. (2014). An overview of pipeline leak detection technologies. American School of Gas Measurement Technology (ASGMT), Peabody, MA, US.
66.
Zurück zum Zitat Beck, S. B. M., Curren, M. D., Sims, N. D., & Stanway, R. (2005). Pipeline network features and leak detection by cross-correlation analysis of reflected waves. Journal of Hydraulic Engineering, 131(8), 715–723.CrossRef Beck, S. B. M., Curren, M. D., Sims, N. D., & Stanway, R. (2005). Pipeline network features and leak detection by cross-correlation analysis of reflected waves. Journal of Hydraulic Engineering, 131(8), 715–723.CrossRef
67.
Zurück zum Zitat Davoodi, S., & Mostafapour, A. (2014). Gas leak locating in steel pipe using wavelet transform and cross-correlation method. The International Journal of Advanced Manufacturing Technology, 70(5), 1125–1135.CrossRef Davoodi, S., & Mostafapour, A. (2014). Gas leak locating in steel pipe using wavelet transform and cross-correlation method. The International Journal of Advanced Manufacturing Technology, 70(5), 1125–1135.CrossRef
68.
Zurück zum Zitat Guo, C., Shi, K., & Chu, X. (2022). Cross-correlation analysis of multiple fibre optic hydrophones for water pipeline leakage detection. International Journal of Environmental Science and Technology, 19(1), 197–208.CrossRef Guo, C., Shi, K., & Chu, X. (2022). Cross-correlation analysis of multiple fibre optic hydrophones for water pipeline leakage detection. International Journal of Environmental Science and Technology, 19(1), 197–208.CrossRef
69.
Zurück zum Zitat Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011). Transient tests for locating and sizing illegal branches in pipe systems. Journal of Hydroinformatics, 13(3), 334–345.CrossRef Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011). Transient tests for locating and sizing illegal branches in pipe systems. Journal of Hydroinformatics, 13(3), 334–345.CrossRef
70.
Zurück zum Zitat Brunone, B. (1999). Transient test-based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, 125(5), 302–306.CrossRef Brunone, B. (1999). Transient test-based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, 125(5), 302–306.CrossRef
71.
Zurück zum Zitat Misiunas, D., Vitkovsky, J., Olsson, G., Simpson, A., & Lambert, M. (2005). Pipeline break detection using pressure transient monitoring. Journal of Water Resources Planning and Management, 131(4), 316–325.CrossRef Misiunas, D., Vitkovsky, J., Olsson, G., Simpson, A., & Lambert, M. (2005). Pipeline break detection using pressure transient monitoring. Journal of Water Resources Planning and Management, 131(4), 316–325.CrossRef
72.
Zurück zum Zitat Meniconi, S., Brunone, B., Ferrante, M., Capponi, C., Carrettini, C. A., Chiesa, C., Segalini, D., & Lanfranchi, E. A. (2015). Anomaly pre-localization in distribution–transmission mains by pump trip: Preliminary field tests in the Milan pipe system. Journal of Hydroinformatics, 17(3), 377–389. Meniconi, S., Brunone, B., Ferrante, M., Capponi, C., Carrettini, C. A., Chiesa, C., Segalini, D., & Lanfranchi, E. A. (2015). Anomaly pre-localization in distribution–transmission mains by pump trip: Preliminary field tests in the Milan pipe system. Journal of Hydroinformatics, 17(3), 377–389.
73.
Zurück zum Zitat Kim, S. H. (2005). Extensive development of leak detection algorithm by impulse response method. Journal of Hydraulic Engineering, 131(3), 201–208.CrossRef Kim, S. H. (2005). Extensive development of leak detection algorithm by impulse response method. Journal of Hydraulic Engineering, 131(3), 201–208.CrossRef
74.
Zurück zum Zitat Liou, C. P. (1998). Pipeline leak detection by impulse response extraction. Journal of Fluids Engineering, 120(4), 833–838.CrossRef Liou, C. P. (1998). Pipeline leak detection by impulse response extraction. Journal of Fluids Engineering, 120(4), 833–838.CrossRef
75.
Zurück zum Zitat Mpesha, W., Hanif Chaudhry, M., & Gassman, S. L. (2002). Leak detection in pipes by frequency response method using a step excitation. Journal of Hydraulic Research, 40(1), 55–62.CrossRef Mpesha, W., Hanif Chaudhry, M., & Gassman, S. L. (2002). Leak detection in pipes by frequency response method using a step excitation. Journal of Hydraulic Research, 40(1), 55–62.CrossRef
76.
Zurück zum Zitat Lee, P. J., Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2005). Leak location using the pattern of the frequency response diagram in pipelines: A numerical study. Journal of Sound and Vibration, 284(3–5), 1051–1073.CrossRef Lee, P. J., Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2005). Leak location using the pattern of the frequency response diagram in pipelines: A numerical study. Journal of Sound and Vibration, 284(3–5), 1051–1073.CrossRef
77.
Zurück zum Zitat Duan, H. F., Lee, P. J., Ghidaoui, M. S., & Tung, Y. K. (2011). Leak detection in complex series pipelines by using the system frequency response method. Journal of Hydraulic Research, 49(2), 213–221.CrossRef Duan, H. F., Lee, P. J., Ghidaoui, M. S., & Tung, Y. K. (2011). Leak detection in complex series pipelines by using the system frequency response method. Journal of Hydraulic Research, 49(2), 213–221.CrossRef
78.
Zurück zum Zitat Gong, J., Zecchin, A., Simpson, A., & Lambert, M. (2014). Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics. Journal of Water Resources Planning and Management, 140(1), 65–74.CrossRef Gong, J., Zecchin, A., Simpson, A., & Lambert, M. (2014). Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics. Journal of Water Resources Planning and Management, 140(1), 65–74.CrossRef
79.
Zurück zum Zitat Wang, X., Lambert, M., Simpson, A., Liggett, J., & Vítkovsky, J. (2002). Leak detection in pipelines using the damping of fluid transients. Journal of Hydraulic Engineering, 128, 697–711.CrossRef Wang, X., Lambert, M., Simpson, A., Liggett, J., & Vítkovsky, J. (2002). Leak detection in pipelines using the damping of fluid transients. Journal of Hydraulic Engineering, 128, 697–711.CrossRef
80.
Zurück zum Zitat Brunone, B., Meniconi, S., & Capponi, C. (2018). Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak. Urban Water Journal, 15(8), 760–768.CrossRef Brunone, B., Meniconi, S., & Capponi, C. (2018). Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak. Urban Water Journal, 15(8), 760–768.CrossRef
81.
Zurück zum Zitat Liggett, J. A., & Chen, L. C. (1994). Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, 120(8), 934–955.CrossRef Liggett, J. A., & Chen, L. C. (1994). Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, 120(8), 934–955.CrossRef
82.
Zurück zum Zitat Covas, D., & Ramos, H. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, 136(2), 248–257.CrossRef Covas, D., & Ramos, H. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, 136(2), 248–257.CrossRef
83.
Zurück zum Zitat Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011). Small amplitude sharp pressure waves to diagnose pipe systems. Water Resources Management, 25(1), 79–96.CrossRef Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011). Small amplitude sharp pressure waves to diagnose pipe systems. Water Resources Management, 25(1), 79–96.CrossRef
84.
Zurück zum Zitat Meniconi, S., Brunone, B., Frisinghelli, M., Mazzetti, E., Larentis, M., & Costisella, C. (2017). Safe transients for pipe survey in a real transmission main by means of a portable device: The case study of the Trento (I) supply system. Procedia Engineering, 186, 228–235.CrossRef Meniconi, S., Brunone, B., Frisinghelli, M., Mazzetti, E., Larentis, M., & Costisella, C. (2017). Safe transients for pipe survey in a real transmission main by means of a portable device: The case study of the Trento (I) supply system. Procedia Engineering, 186, 228–235.CrossRef
85.
Zurück zum Zitat Wang, S., & Carroll, J. J. (2007). Leak detection for gas and liquid pipelines by online modeling. SPE Projects, Facilities & Construction, 2(2), 1–9. Wang, S., & Carroll, J. J. (2007). Leak detection for gas and liquid pipelines by online modeling. SPE Projects, Facilities & Construction, 2(2), 1–9.
86.
Zurück zum Zitat Li, Y. (2017). The research of subsea pipeline leak detection and location system based on SPRT and pressure gradient method. Masters Thesis, Zhejiang University, China. Li, Y. (2017). The research of subsea pipeline leak detection and location system based on SPRT and pressure gradient method. Masters Thesis, Zhejiang University, China.
87.
Zurück zum Zitat Zhang, H., & Li, C. (2005). Leak detection technique for gas pipeline with unequal temperatures. Petroleum Engineering Construction, 31(1), 25–27. Zhang, H., & Li, C. (2005). Leak detection technique for gas pipeline with unequal temperatures. Petroleum Engineering Construction, 31(1), 25–27.
88.
Zurück zum Zitat Verde, C., & Torres, L. (2017). Modeling and monitoring of pipelines and networks. Springer.CrossRef Verde, C., & Torres, L. (2017). Modeling and monitoring of pipelines and networks. Springer.CrossRef
89.
Zurück zum Zitat Jiménez Cabas, J. A. (2018). Liquid transport pipeline monitoring architecture based on state estimators for leak detection and location (Master’s thesis). Universidad del Norte. Jiménez Cabas, J. A. (2018). Liquid transport pipeline monitoring architecture based on state estimators for leak detection and location (Master’s thesis). Universidad del Norte.
90.
Zurück zum Zitat Aamo, O. M. (2015). Leak detection, size estimation and localization in pipe flows. IEEE Transactions on Automatic Control, 61(1), 246–251.MathSciNetMATHCrossRef Aamo, O. M. (2015). Leak detection, size estimation and localization in pipe flows. IEEE Transactions on Automatic Control, 61(1), 246–251.MathSciNetMATHCrossRef
91.
Zurück zum Zitat Navarro, A., Begovich, O., Sanchez-Torres, J. D., Besançon, G., & Murillo, J. A. P. (2012, June). Leak detection and isolation using an observer based on robust sliding mode differentiators. In World Automation Congress 2012 (pp. 1–6). IEEE. Navarro, A., Begovich, O., Sanchez-Torres, J. D., Besançon, G., & Murillo, J. A. P. (2012, June). Leak detection and isolation using an observer based on robust sliding mode differentiators. In World Automation Congress 2012 (pp. 1–6). IEEE.
92.
Zurück zum Zitat Negrete, M. A., & Verde, C. (2012). Multi-leak reconstruction in pipelines by sliding mode observers. IFAC Proceedings Volumes, 45(20), 934–939.CrossRef Negrete, M. A., & Verde, C. (2012). Multi-leak reconstruction in pipelines by sliding mode observers. IFAC Proceedings Volumes, 45(20), 934–939.CrossRef
93.
Zurück zum Zitat Espinoza-Moreno, G., Begovich, O., & Sanchez-Torres, J. (2014, August). Real time leak detection and isolation in pipelines: A comparison between sliding mode observer and algebraic steady state method. In 2014 World Automation Congress (WAC) (pp. 748–753). IEEE. Espinoza-Moreno, G., Begovich, O., & Sanchez-Torres, J. (2014, August). Real time leak detection and isolation in pipelines: A comparison between sliding mode observer and algebraic steady state method. In 2014 World Automation Congress (WAC) (pp. 748–753). IEEE.
94.
Zurück zum Zitat Carvajal-Rubio, J. E., Begovich, O., & Sánchez-Torres, J. D. (2015, October). Real-time leak detection and isolation in plastic pipelines with equivalent control based observers. In 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (pp. 1–6). IEEE. Carvajal-Rubio, J. E., Begovich, O., & Sánchez-Torres, J. D. (2015, October). Real-time leak detection and isolation in plastic pipelines with equivalent control based observers. In 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (pp. 1–6). IEEE.
95.
Zurück zum Zitat Verde, C. (2004). Minimal order nonlinear observer for leak detection. Journal of Dynamic Systems, Measurement, and Control, 126(3), 467–472.CrossRef Verde, C. (2004). Minimal order nonlinear observer for leak detection. Journal of Dynamic Systems, Measurement, and Control, 126(3), 467–472.CrossRef
96.
Zurück zum Zitat Besancon, G., Georges, D., Begovich, O., Verde, C., & Aldana, C. (2007, July). Direct observer design for leak detection and estimation in pipelines. In 2007 European Control Conference (ECC) (pp. 5666–5670). IEEE. Besancon, G., Georges, D., Begovich, O., Verde, C., & Aldana, C. (2007, July). Direct observer design for leak detection and estimation in pipelines. In 2007 European Control Conference (ECC) (pp. 5666–5670). IEEE.
97.
Zurück zum Zitat Torres, L., Besançon, G., Georges, D., Navarro, A., & Begovich, O. (2011). Examples of pipeline monitoring with nonlinear observers and real-data validation. In 8th International Multi-Conference on Systems, Signals & Devices (SSD 2011) (p. v). Ecole Nationale d’Ingenieurs de Sfax. Torres, L., Besançon, G., Georges, D., Navarro, A., & Begovich, O. (2011). Examples of pipeline monitoring with nonlinear observers and real-data validation. In 8th International Multi-Conference on Systems, Signals & Devices (SSD 2011) (p. v). Ecole Nationale d’Ingenieurs de Sfax.
98.
Zurück zum Zitat Doney, K. (2007). Leak detection in pipelines using the extended Kalman filter and the extended boundary approach (Doctoral dissertation). Doney, K. (2007). Leak detection in pipelines using the extended Kalman filter and the extended boundary approach (Doctoral dissertation).
99.
Zurück zum Zitat Navarro, A., Begovich, O., Besançon, G., & Dulhoste, J. F. (2011, September). Real-time leak isolation based on state estimation in a plastic pipeline. In 2011 IEEE International Conference on Control Applications (CCA) (pp. 953–957). IEEE. Navarro, A., Begovich, O., Besançon, G., & Dulhoste, J. F. (2011, September). Real-time leak isolation based on state estimation in a plastic pipeline. In 2011 IEEE International Conference on Control Applications (CCA) (pp. 953–957). IEEE.
100.
Zurück zum Zitat Gong, J., Cai, J., Li, X., & Song, S. (2007, August). Research on state estimation of oil pipeline considering adaptive extended Kalman filtering. In 2007 International Conference on Mechatronics and Automation (pp. 1294–1298). IEEE. Gong, J., Cai, J., Li, X., & Song, S. (2007, August). Research on state estimation of oil pipeline considering adaptive extended Kalman filtering. In 2007 International Conference on Mechatronics and Automation (pp. 1294–1298). IEEE.
101.
Zurück zum Zitat Modisette, J. P. (2013, April). State estimation of pipeline models using the ensemble Kalman filter. In PSIG Annual Meeting. OnePetro. Modisette, J. P. (2013, April). State estimation of pipeline models using the ensemble Kalman filter. In PSIG Annual Meeting. OnePetro.
102.
Zurück zum Zitat Okeya, I., Kapelan, Z., Hutton, C., & Naga, D. (2014). Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Engineering, 89, 418–427.CrossRef Okeya, I., Kapelan, Z., Hutton, C., & Naga, D. (2014). Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Engineering, 89, 418–427.CrossRef
103.
Zurück zum Zitat Durgut, İ, & Leblebicioğlu, M. K. (2016). State estimation of transient flow in gas pipelines by a Kalman filter-based estimator. Journal of Natural Gas Science and Engineering, 35, 189–196.CrossRef Durgut, İ, & Leblebicioğlu, M. K. (2016). State estimation of transient flow in gas pipelines by a Kalman filter-based estimator. Journal of Natural Gas Science and Engineering, 35, 189–196.CrossRef
104.
Zurück zum Zitat Delgado-Aguinaga, J. A., Begovich, O., & Besançon, G. (2016, October). Varying-parameter modeling and extended Kalman filtering for reliable leak diagnosis under temperature variations. In 2016 20th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 632–637). IEEE. Delgado-Aguinaga, J. A., Begovich, O., & Besançon, G. (2016, October). Varying-parameter modeling and extended Kalman filtering for reliable leak diagnosis under temperature variations. In 2016 20th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 632–637). IEEE.
105.
Zurück zum Zitat Emara-Shabaik, H. E., Khulief, Y. A., & Hussaini, I. (2002). A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 216(6), 497–512. Emara-Shabaik, H. E., Khulief, Y. A., & Hussaini, I. (2002). A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 216(6), 497–512.
106.
Zurück zum Zitat Khulief, Y. A., & Emara-Shabaik, H. E. (2006). Laboratory investigation of a multiple-model state estimation scheme for detection and isolation of leaks in pipelines. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 220(1), 1–13. Khulief, Y. A., & Emara-Shabaik, H. E. (2006). Laboratory investigation of a multiple-model state estimation scheme for detection and isolation of leaks in pipelines. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 220(1), 1–13.
107.
Zurück zum Zitat Torres, L., Besancon, G., & Georges, D. (2008, December). A collocation model for water-hammer dynamics with application to leak detection. In 2008 47th IEEE Conference on Decision and Control (pp. 3890–3894). IEEE. Torres, L., Besancon, G., & Georges, D. (2008, December). A collocation model for water-hammer dynamics with application to leak detection. In 2008 47th IEEE Conference on Decision and Control (pp. 3890–3894). IEEE.
108.
Zurück zum Zitat Dos Santos, P. L., Azevedo-Perdicoúlis, T. P., Jank, G., Ramos, J. A., & de Carvalho, J. M. (2011). Leakage detection and location in gas pipelines through an LPV identification approach. Communications in Nonlinear Science and Numerical Simulation, 16(12), 4657–4665.MATHCrossRef Dos Santos, P. L., Azevedo-Perdicoúlis, T. P., Jank, G., Ramos, J. A., & de Carvalho, J. M. (2011). Leakage detection and location in gas pipelines through an LPV identification approach. Communications in Nonlinear Science and Numerical Simulation, 16(12), 4657–4665.MATHCrossRef
109.
Zurück zum Zitat Guillén, M., Dulhoste, J. F., Besançon, G., Rubio, I., Santos, R., & Georges, D. (2014, June). Leak detection and location based on improved pipe model and nonlinear observer. In 2014 European Control Conference (ECC) (pp. 958–963). IEEE. Guillén, M., Dulhoste, J. F., Besançon, G., Rubio, I., Santos, R., & Georges, D. (2014, June). Leak detection and location based on improved pipe model and nonlinear observer. In 2014 European Control Conference (ECC) (pp. 958–963). IEEE.
110.
Zurück zum Zitat Choi, D., Kim, S. W., Choi, M. A., & Geem, Z. (2016). Adaptive Kalman filter based on adjustable sampling interval in burst detection for water distribution system. Water, 8(4), 142.CrossRef Choi, D., Kim, S. W., Choi, M. A., & Geem, Z. (2016). Adaptive Kalman filter based on adjustable sampling interval in burst detection for water distribution system. Water, 8(4), 142.CrossRef
111.
Zurück zum Zitat Verde, C., Torres, L., & González, O. (2016). Decentralized scheme for leaks’ location in a branched pipeline. Journal of Loss Prevention in the Process Industries, 43, 18–28.CrossRef Verde, C., Torres, L., & González, O. (2016). Decentralized scheme for leaks’ location in a branched pipeline. Journal of Loss Prevention in the Process Industries, 43, 18–28.CrossRef
112.
Zurück zum Zitat Delgado-Aguiñaga, J. A., Besançon, G., Begovich, O., & Carvajal, J. E. (2016). Multi-leak diagnosis in pipelines based on extended Kalman filter. Control Engineering Practice, 49, 139–148.CrossRef Delgado-Aguiñaga, J. A., Besançon, G., Begovich, O., & Carvajal, J. E. (2016). Multi-leak diagnosis in pipelines based on extended Kalman filter. Control Engineering Practice, 49, 139–148.CrossRef
113.
Zurück zum Zitat Dulhoste, J. F., Besançon, G., Torres, L., Begovich, O., & Navarro, A. (2011, December). About friction modeling for observer-based leak estimation in pipelines. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (pp. 4413–4418). IEEE. Dulhoste, J. F., Besançon, G., Torres, L., Begovich, O., & Navarro, A. (2011, December). About friction modeling for observer-based leak estimation in pipelines. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (pp. 4413–4418). IEEE.
114.
Zurück zum Zitat Torres, L., Verde, C., Besancon, G., & Gonzalez, O. (2014). High-gain observers for leak location in subterranean pipelines of liquefied petroleum gas. International Journal of Robust and Nonlinear Control, 24(6), 1127–1141.MathSciNetMATHCrossRef Torres, L., Verde, C., Besancon, G., & Gonzalez, O. (2014). High-gain observers for leak location in subterranean pipelines of liquefied petroleum gas. International Journal of Robust and Nonlinear Control, 24(6), 1127–1141.MathSciNetMATHCrossRef
115.
Zurück zum Zitat Marlow, D., Heart, S., Burn, S., Urquhart, A., Gould, S., Anderson, M., Cook, S., Ambrose, M., Madin, B., & Fitzgerald, A. (2007). Condition assessment strategies and protocols for water and wastewater utility assets. Water Environment Research Foundation. Marlow, D., Heart, S., Burn, S., Urquhart, A., Gould, S., Anderson, M., Cook, S., Ambrose, M., Madin, B., & Fitzgerald, A. (2007). Condition assessment strategies and protocols for water and wastewater utility assets. Water Environment Research Foundation.
116.
Zurück zum Zitat Wu, J., Li, H., Wang, L., Xu, B., Wang, H., Cai, Y., Liu, S., & Tao, Z. (2017). Performance evaluation indices of pipeline leak monitoring systems. Oil & Gas Storage and Transportation, 36, 209–213. Wu, J., Li, H., Wang, L., Xu, B., Wang, H., Cai, Y., Liu, S., & Tao, Z. (2017). Performance evaluation indices of pipeline leak monitoring systems. Oil & Gas Storage and Transportation, 36, 209–213.
117.
Zurück zum Zitat Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45.CrossRef Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45.CrossRef
118.
Zurück zum Zitat Misiūnas, D. (2008). Failure monitoring and asset condition assessment in water supply systems. Vilniaus Gedimino technikos univer-sitetas. Misiūnas, D. (2008). Failure monitoring and asset condition assessment in water supply systems. Vilniaus Gedimino technikos univer-sitetas.
Metadaten
Titel
Pipeline Health Monitoring Technology
verfasst von
Hongfang Lu
Zhao-Dong Xu
Tom Iseley
Haoyan Peng
Lingdi Fu
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6798-6_3