Skip to main content
Erschienen in: Experiments in Fluids 3/2012

01.09.2012 | Research Article

PIV study on a shock-induced separation in a transonic flow

verfasst von: Fulvio Sartor, Gilles Losfeld, Reynald Bur

Erschienen in: Experiments in Fluids | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A transonic interaction between a steady shock wave and a turbulent boundary layer in a Mach 1.4 channel flow is experimentally investigated by means of particle image velocimetry (PIV). In the test section, the lower wall is equipped with a contour profile shaped as a bump allowing flow separation. The transonic interaction, characterized by the existence in the outer flow of a lambda shock pattern, causes the separation of the boundary layer, and a low-speed recirculating bubble is observed downstream of the shock foot. Two-component PIV velocity measurements have been performed using an iterative gradient-based cross-correlation algorithm, providing high-speed and flexible calculations, instead of the classic multi-pass processing with FFT-based cross-correlation. The experiments are performed discussing all the hypotheses linked to the experimental set-up and the technique of investigation such as the two-dimensionality assumption of the flow, the particle response assessment, the seeding system, and the PIV correlation uncertainty. Mean velocity fields are presented for the whole interaction with particular attention for the recirculating bubble downstream of the detachment, especially in the mixing layer zone where the effects of the shear stress are most relevant. Turbulence is discussed in details, the results are compared to previous study, and new results are given for the turbulent production term and the return to isotropy mechanism. Finally, using different camera lens, a zoom in the vicinity of the wall presents mean and turbulent velocity fields for the incoming boundary layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
French acronym for Iterative Lucas-Kanade Optical Flow.
 
2
Topas Gmbh ATM 210.
 
3
With images of 2,048 × 2,048 pixels and a TESLA C1060-4 Gb memory, is required less than 1 s per image.
 
4
High-speed camera Phantom V4.1 with a resolution of 752 × 424 pixels and an acquisition speed of 1,000 frames per second, using horizontal knife-edge orientation.
 
Literatur
Zurück zum Zitat Ardonceau P (1984) The structure of turbulence in a supersonic shock-wave/boundary-layer interaction. AIAA J 22(9):1254–1262CrossRef Ardonceau P (1984) The structure of turbulence in a supersonic shock-wave/boundary-layer interaction. AIAA J 22(9):1254–1262CrossRef
Zurück zum Zitat Bruce P, Burton D, Titchener N, Babinsky H (2011) Corner effect and separation in transonic channel flows. J Fluid Mech 679:247–262MATHCrossRef Bruce P, Burton D, Titchener N, Babinsky H (2011) Corner effect and separation in transonic channel flows. J Fluid Mech 679:247–262MATHCrossRef
Zurück zum Zitat Bur R, Benay R, Galli A, Berthouze P (2006) Experimental and numerical study of forced shock-wave oscillations in a transonic channel. Aerosp Sci Technol 10(4):265–278CrossRef Bur R, Benay R, Galli A, Berthouze P (2006) Experimental and numerical study of forced shock-wave oscillations in a transonic channel. Aerosp Sci Technol 10(4):265–278CrossRef
Zurück zum Zitat Bur R, Coponet D, Carpels Y (2009) Separation control by vortex generator devices in a transonic channel flow. Shock Waves 19(6):521–530CrossRef Bur R, Coponet D, Carpels Y (2009) Separation control by vortex generator devices in a transonic channel flow. Shock Waves 19(6):521–530CrossRef
Zurück zum Zitat Bur R, Corbel B, Délery J (1998) Study of passive control in a transonic shock wave/boundary-layer interaction. AIAA J 36(3):394–400CrossRef Bur R, Corbel B, Délery J (1998) Study of passive control in a transonic shock wave/boundary-layer interaction. AIAA J 36(3):394–400CrossRef
Zurück zum Zitat Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50(3):1–14 Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50(3):1–14
Zurück zum Zitat Délery J (1978) Analysis of the separation due to shock wave-turbulent boundary layer interaction in transonic flow. La Recherche Aerospatiale pp 305–320 Délery J (1978) Analysis of the separation due to shock wave-turbulent boundary layer interaction in transonic flow. La Recherche Aerospatiale pp 305–320
Zurück zum Zitat Délery J (1983) Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions. AIAA J 21:180–185CrossRef Délery J (1983) Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions. AIAA J 21:180–185CrossRef
Zurück zum Zitat Délery J (1999) Flow physics involved in shock wave/boundary layer interaction control. In: IUTAM symposium on mechanics of passive and active flow control: proceedings of the IUTAM symposium held in Göttingen, Germany, 7–11 September 1998, vol 53. Springer, Netherlands, p 15 Délery J (1999) Flow physics involved in shock wave/boundary layer interaction control. In: IUTAM symposium on mechanics of passive and active flow control: proceedings of the IUTAM symposium held in Göttingen, Germany, 7–11 September 1998, vol 53. Springer, Netherlands, p 15
Zurück zum Zitat Délery J, Marvin J (1986) Shock-wave boundary layer interactions. AGARDograph Délery J, Marvin J (1986) Shock-wave boundary layer interactions. AGARDograph
Zurück zum Zitat Dolling D (2001) Fifty years of shock-wave/boundary-layer interaction research: what next?. AIAA J 39(8):1517–1531CrossRef Dolling D (2001) Fifty years of shock-wave/boundary-layer interaction research: what next?. AIAA J 39(8):1517–1531CrossRef
Zurück zum Zitat Dupont P, Haddad C, Debiève J (2006) Space and time organization in a shock-induced separated boundary layer. J Fluid Mech 559:255–278MATHCrossRef Dupont P, Haddad C, Debiève J (2006) Space and time organization in a shock-induced separated boundary layer. J Fluid Mech 559:255–278MATHCrossRef
Zurück zum Zitat Dupont P, Piponniau S, Sidoren A, Debiève J (2008) Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J 46(6):1365–1370CrossRef Dupont P, Piponniau S, Sidoren A, Debiève J (2008) Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J 46(6):1365–1370CrossRef
Zurück zum Zitat Elsinga G, Van Oudheusden B, Scarano F (2005) Evaluation of aero-optical distortion effects in PIV. Exp Fluids 39(2):246–256CrossRef Elsinga G, Van Oudheusden B, Scarano F (2005) Evaluation of aero-optical distortion effects in PIV. Exp Fluids 39(2):246–256CrossRef
Zurück zum Zitat Galli A, Corbel B, Bur R (2005) Control of forced shock-wave oscillations and separated boundary layer interaction. Aerosp Sci Technol 9(8):653–660CrossRef Galli A, Corbel B, Bur R (2005) Control of forced shock-wave oscillations and separated boundary layer interaction. Aerosp Sci Technol 9(8):653–660CrossRef
Zurück zum Zitat Ganapathisubramani B, Clemens N, Dolling D (2007) Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J Fluid Mech 585:369–394MATHCrossRef Ganapathisubramani B, Clemens N, Dolling D (2007) Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J Fluid Mech 585:369–394MATHCrossRef
Zurück zum Zitat Garnier E, Sagaut P, Deville M (2002) Large eddy simulation of shock/boundary-layer interaction. AIAA J 40(10):1935–1944CrossRef Garnier E, Sagaut P, Deville M (2002) Large eddy simulation of shock/boundary-layer interaction. AIAA J 40(10):1935–1944CrossRef
Zurück zum Zitat Hadjadj A, Dussauge J (2009) Shock wave boundary layer interaction. Shock Waves 19(6):449–452CrossRef Hadjadj A, Dussauge J (2009) Shock wave boundary layer interaction. Shock Waves 19(6):449–452CrossRef
Zurück zum Zitat Hartmann A, Klaas M, Schröder W (2011) Time-resolved stereo PIV measurements of shock–boundary layer interaction on a supercritical airfoil. Exp Fluids 50(3):1–14 Hartmann A, Klaas M, Schröder W (2011) Time-resolved stereo PIV measurements of shock–boundary layer interaction on a supercritical airfoil. Exp Fluids 50(3):1–14
Zurück zum Zitat Hou Y, Clemens N, Dolling D (2002) Multi-frame PIV imaging of shock/turbulent boundary layer interactions. In: APS meeting abstracts vol. 1 Hou Y, Clemens N, Dolling D (2002) Multi-frame PIV imaging of shock/turbulent boundary layer interactions. In: APS meeting abstracts vol. 1
Zurück zum Zitat Hou Y, Clemens N, Dolling D (2003) Wide-field PIV study of shock-induced turbulent boundary layer separation. AIAA paper 2003-0441 Hou Y, Clemens N, Dolling D (2003) Wide-field PIV study of shock-induced turbulent boundary layer separation. AIAA paper 2003-0441
Zurück zum Zitat Humble R, Scarano F, Van Oudheusden B (2006) Experimental study of an incident shock wave/turbulent boundary layer interaction using PIV. AIAA paper 2006-3361 Humble R, Scarano F, Van Oudheusden B (2006) Experimental study of an incident shock wave/turbulent boundary layer interaction using PIV. AIAA paper 2006-3361
Zurück zum Zitat Humble R, Scarano F, Van Oudheusden B (2007) Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp Fluids 43(43):173–183CrossRef Humble R, Scarano F, Van Oudheusden B (2007) Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp Fluids 43(43):173–183CrossRef
Zurück zum Zitat Johnson D, Bachalo W, Owen F (1981) Transonic flow past a symmetrical airfoil at high angle of attack. J Aircr 18(1):7–14CrossRef Johnson D, Bachalo W, Owen F (1981) Transonic flow past a symmetrical airfoil at high angle of attack. J Aircr 18(1):7–14CrossRef
Zurück zum Zitat Kiya M, Sasaki K (1983) Structure of a turbulent separation bubble. J Fluid Mech 137:83–113CrossRef Kiya M, Sasaki K (1983) Structure of a turbulent separation bubble. J Fluid Mech 137:83–113CrossRef
Zurück zum Zitat Knight D, Degrez G (1998) Shock wave boundary layer interactions in high mach number flowsa critical survey of current cfd prediction capabilities. AGARD AR-319 2:1–1 Knight D, Degrez G (1998) Shock wave boundary layer interactions in high mach number flowsa critical survey of current cfd prediction capabilities. AGARD AR-319 2:1–1
Zurück zum Zitat Lapsa A, Dahm W (2011) Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer. Exp Fluids 50(1):89–108CrossRef Lapsa A, Dahm W (2011) Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer. Exp Fluids 50(1):89–108CrossRef
Zurück zum Zitat Mitchell D, Honnery D, Soria J (2011) Particle relaxation and its influence on the particle image velocimetry cross-correlation function. Exp Fluids 50(5):1–15 Mitchell D, Honnery D, Soria J (2011) Particle relaxation and its influence on the particle image velocimetry cross-correlation function. Exp Fluids 50(5):1–15
Zurück zum Zitat Muller J, Mummler R, Staudacher W (2001) Comparison of some measurement techniques for shock-induced boundary layer separation. Aerosp Sci Technol 5(6):383–395CrossRef Muller J, Mummler R, Staudacher W (2001) Comparison of some measurement techniques for shock-induced boundary layer separation. Aerosp Sci Technol 5(6):383–395CrossRef
Zurück zum Zitat Papamoschou D, Roshko A (1988) The compressible turbulent shear layer: an experimental study. J Fluid Mech 197(453) Papamoschou D, Roshko A (1988) The compressible turbulent shear layer: an experimental study. J Fluid Mech 197(453)
Zurück zum Zitat Piponniau S, Dussauge J, Debiève J, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629:87–108MATHCrossRef Piponniau S, Dussauge J, Debiève J, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629:87–108MATHCrossRef
Zurück zum Zitat Pirozzoli S, Grasso F (2006) Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at m = 2.25. Phys Fluids 18:065,113CrossRef Pirozzoli S, Grasso F (2006) Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at m = 2.25. Phys Fluids 18:065,113CrossRef
Zurück zum Zitat Raffel M (2007) Particle image velocimetry: a practical guide. Springer, Berlin Raffel M (2007) Particle image velocimetry: a practical guide. Springer, Berlin
Zurück zum Zitat Ragni D, Schrijer F, van Oudheusden B, Scarano F (2011) Particle tracer response across shocks measured by PIV. Exp Fluids 50(1):53–64CrossRef Ragni D, Schrijer F, van Oudheusden B, Scarano F (2011) Particle tracer response across shocks measured by PIV. Exp Fluids 50(1):53–64CrossRef
Zurück zum Zitat Samimy M, Lele S (1991) Motion of particles with inertia in a compressible free shear layer. Phys Fluids A 3:1915CrossRef Samimy M, Lele S (1991) Motion of particles with inertia in a compressible free shear layer. Phys Fluids A 3:1915CrossRef
Zurück zum Zitat Selig MS, Andreopoulos J, Muck KC, Dussauge JP, Smits AJ (1989) Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J 27(7):862–869CrossRef Selig MS, Andreopoulos J, Muck KC, Dussauge JP, Smits AJ (1989) Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J 27(7):862–869CrossRef
Zurück zum Zitat Smits A, Muck K (1987) Experimental study of three shock wave/turbulent boundary layer interactions. J Fluid Mech 182:291–314CrossRef Smits A, Muck K (1987) Experimental study of three shock wave/turbulent boundary layer interactions. J Fluid Mech 182:291–314CrossRef
Zurück zum Zitat Souverein L, Van Oudheusden B, Scarano F, Dupont P (2009) Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas Sci Technol 20:1–16CrossRef Souverein L, Van Oudheusden B, Scarano F, Dupont P (2009) Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas Sci Technol 20:1–16CrossRef
Zurück zum Zitat van Oudheusden B, Jöbsis A, Scarano F, Souverein L (2011) Investigation of the unsteadiness of a shock-reflection interaction with time-resolved particle image velocimetry. Shock Waves 21:1–13CrossRef van Oudheusden B, Jöbsis A, Scarano F, Souverein L (2011) Investigation of the unsteadiness of a shock-reflection interaction with time-resolved particle image velocimetry. Shock Waves 21:1–13CrossRef
Zurück zum Zitat Webster D, DeGraaff D, Eaton J (1996) Turbulence characteristics of a boundary layer over a two-dimensional bump. J Fluid Mech 320:53–70CrossRef Webster D, DeGraaff D, Eaton J (1996) Turbulence characteristics of a boundary layer over a two-dimensional bump. J Fluid Mech 320:53–70CrossRef
Zurück zum Zitat Wu M, Martin M (2007) Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J 45(4):879–889CrossRef Wu M, Martin M (2007) Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J 45(4):879–889CrossRef
Metadaten
Titel
PIV study on a shock-induced separation in a transonic flow
verfasst von
Fulvio Sartor
Gilles Losfeld
Reynald Bur
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 3/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1330-4

Weitere Artikel der Ausgabe 3/2012

Experiments in Fluids 3/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.