Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Plate load tests for investigation of the load–settlement behaviour of shallow foundation on bitumen-coated geogrid reinforced soil bed

verfasst von: Asif Akbar, Javed Ahmad Bhat, Bashir Ahmed Mir

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paucity of the desirable construction land in India due to day by day increasing population has put grand challenges in front of engineers. So they accentuated the use of undesirable construction land which is having low bearing capacity and large plastic deformation. Among several ground improvement techniques, geosynthetic reinforced soil system is widely adopted as foundation medium keeping in view its economical benefits and sustainable development. Therefore, the main objective of this study was to investigate the effect of a bitumen-coated geogrid reinforcement on the bearing capacity ratio of a shallow foundation in a two-layer silty clay foundation bed. The top layer of locally available silty clay was compacted at OMC (19%) with 0.95MDD, and the bottom soft layer was compacted at dry side of OMC (15%) with 0.75MDD. Various model plate load tests were carried out using a square footing of size 200 mm and thickness 25 mm over a silty clay bed reinforced with bitumen-coated geogrid BX-40, BX-60 and BX-80 having different ultimate strengths in a test tank of dimensions 1000 × 1000 × 1000 mm. The effect on bearing capacity and plastic deformation due to varying end conditions of geogrid reinforcement was also investigated. The other various parameters investigated were the top spacing ratio, width of the geogrid, no. of layers of the geogrid and the stress distribution in various reinforcement layouts. The bearing capacity ratio of reinforced clay was found to be increased by 20–55% than unreinforced clay. The settlement reduction factor of reinforced clay was increased by 9–40% than unreinforced clay. Also the vertical stresses were reduced up to 20% in reinforced clay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holtz WG (1954) Engineering properties of expansive clays. Trans Am Soc Civ Eng 121:641–677CrossRef Holtz WG (1954) Engineering properties of expansive clays. Trans Am Soc Civ Eng 121:641–677CrossRef
2.
Zurück zum Zitat Raison CA (ed) (2004) Ground and soil improvement. Thomas Telford, London Raison CA (ed) (2004) Ground and soil improvement. Thomas Telford, London
3.
Zurück zum Zitat Mir BA (2015) Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. Int J Civ Eng 13(3):203–212 Mir BA (2015) Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. Int J Civ Eng 13(3):203–212
4.
Zurück zum Zitat Broms BB (1979) Problems and solutions to constructions in soft clay. In: Proceedings of 6th Asian Regional Conference SMFE, Singapore, vol 2, pp 3–38 Broms BB (1979) Problems and solutions to constructions in soft clay. In: Proceedings of 6th Asian Regional Conference SMFE, Singapore, vol 2, pp 3–38
5.
Zurück zum Zitat Mitchell JK (1981) Soil improvement-state of the art report. In: Proceedings of 11th international conference on SMFE, vol 4, pp 509–565 Mitchell JK (1981) Soil improvement-state of the art report. In: Proceedings of 11th international conference on SMFE, vol 4, pp 509–565
6.
Zurück zum Zitat Chai J, Carter JP (2011) Deformation analysis in soft ground improvement, vol 18. Springer, BerlinCrossRef Chai J, Carter JP (2011) Deformation analysis in soft ground improvement, vol 18. Springer, BerlinCrossRef
7.
Zurück zum Zitat Juneja A, Mir BA (2012) Behaviour of clay reinforced by sand compaction pile with smear. Proc Inst Civ Eng Ground Improv 165(2):111–124CrossRef Juneja A, Mir BA (2012) Behaviour of clay reinforced by sand compaction pile with smear. Proc Inst Civ Eng Ground Improv 165(2):111–124CrossRef
8.
Zurück zum Zitat Vidal H (1969) The principle of reinforced earth. Highway Res Rec 282:1–16 Vidal H (1969) The principle of reinforced earth. Highway Res Rec 282:1–16
9.
Zurück zum Zitat Ochiai H (2001) Landmarks in earth reinforcement: proceedings of the international symposium on earth reinforcement: Fukuoka, Kyushu, Japan, 14–16 November 2001, vol 1. Taylor & Francis US Ochiai H (2001) Landmarks in earth reinforcement: proceedings of the international symposium on earth reinforcement: Fukuoka, Kyushu, Japan, 14–16 November 2001, vol 1. Taylor & Francis US
10.
Zurück zum Zitat Guido VA (1987) Plate loading tests on geogrid-reinforced earth slab. In: Geosynthetic’87 Conference, pp 216–225 Guido VA (1987) Plate loading tests on geogrid-reinforced earth slab. In: Geosynthetic’87 Conference, pp 216–225
11.
Zurück zum Zitat Adams MT, Collin JG (1997) Large model spread footing load tests on geosynthetic reinforced soil foundations. J Geotech Geoenviron Eng 123(1):66–72CrossRef Adams MT, Collin JG (1997) Large model spread footing load tests on geosynthetic reinforced soil foundations. J Geotech Geoenviron Eng 123(1):66–72CrossRef
12.
Zurück zum Zitat DeMerchant MR, Valsangkar AJ, Schriver AB (2002) Plate load tests on geogrid-reinforced expanded shale lightweight aggregate. Geotext Geomembr 20(3):173–190CrossRef DeMerchant MR, Valsangkar AJ, Schriver AB (2002) Plate load tests on geogrid-reinforced expanded shale lightweight aggregate. Geotext Geomembr 20(3):173–190CrossRef
13.
Zurück zum Zitat Basudhar PK, Saha S, Deb K (2007) Circular footings resting on geotextile-reinforced sand bed. Geotext Geomembr 25(6):377–384CrossRef Basudhar PK, Saha S, Deb K (2007) Circular footings resting on geotextile-reinforced sand bed. Geotext Geomembr 25(6):377–384CrossRef
14.
Zurück zum Zitat Abu-Farsakh M, Chen Q, Sharma R, Zhang X (2008) Large-scale model footing tests on geogrid-reinforced foundation and marginal embankment soils. Geotech Test J 31(5):413–423 Abu-Farsakh M, Chen Q, Sharma R, Zhang X (2008) Large-scale model footing tests on geogrid-reinforced foundation and marginal embankment soils. Geotech Test J 31(5):413–423
15.
Zurück zum Zitat Prasad BD, Hariprasad C, Umashankar B (2016) Load-settlement response of square footing on geogrid reinforced layered granular beds. Int J Geosynth Ground Eng 2(4):36CrossRef Prasad BD, Hariprasad C, Umashankar B (2016) Load-settlement response of square footing on geogrid reinforced layered granular beds. Int J Geosynth Ground Eng 2(4):36CrossRef
16.
Zurück zum Zitat Mir BA, Ashraf S (2018) Evaluation of load–settlement behaviour of square model footings resting on geogrid reinforced granular soils. In: International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”. Springer, Cham, pp 103–126 Mir BA, Ashraf S (2018) Evaluation of load–settlement behaviour of square model footings resting on geogrid reinforced granular soils. In: International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”. Springer, Cham, pp 103–126
17.
Zurück zum Zitat Binquet J, Lee KL (1975) Bearing capacity tests on reinforced earth slabs. J Geotech Geoenviron Eng 101(ASCE# 11792 Proceeding) Binquet J, Lee KL (1975) Bearing capacity tests on reinforced earth slabs. J Geotech Geoenviron Eng 101(ASCE# 11792 Proceeding)
18.
Zurück zum Zitat McGown A, Andrawes KZ, Al-Hasani MM (1978) Effect of inclusion properties on the behaviour of sand. Geotechnique 28(3):327–346CrossRef McGown A, Andrawes KZ, Al-Hasani MM (1978) Effect of inclusion properties on the behaviour of sand. Geotechnique 28(3):327–346CrossRef
19.
Zurück zum Zitat Rao GV (1996) Geosynthetics in the Indian environment. Indian Geotech J 26(1):94 Rao GV (1996) Geosynthetics in the Indian environment. Indian Geotech J 26(1):94
20.
Zurück zum Zitat Sarant S (2005) Engineering aspects of reinforced soil. Indian Geotech J 35:1 Sarant S (2005) Engineering aspects of reinforced soil. Indian Geotech J 35:1
21.
Zurück zum Zitat Shukla SK, Yin JH (2006) Fundamentals of geosynthetic engineering-Chapter 4. Taylor & Francis Group, LLC, London, UK. ISBN10 0-415-39444-9, 117 Shukla SK, Yin JH (2006) Fundamentals of geosynthetic engineering-Chapter 4. Taylor & Francis Group, LLC, London, UK. ISBN10 0-415-39444-9, 117
22.
Zurück zum Zitat Mir BA (2014) Geosynthetics applications in highway construction in J&K: sustainable infrastructure development. i-Manager’s J Struct Eng 3(3):1 Mir BA (2014) Geosynthetics applications in highway construction in J&K: sustainable infrastructure development. i-Manager’s J Struct Eng 3(3):1
23.
Zurück zum Zitat Shukla SK (2017) An introduction to geosynthetic engineering. CRC Press, Boca RatonCrossRef Shukla SK (2017) An introduction to geosynthetic engineering. CRC Press, Boca RatonCrossRef
24.
Zurück zum Zitat Sridharan A, Srinivasa Murthy BR, Vasudevan A (1989) Model tests on reinforced soil mattress on soft soil. In: Congrès intrnational de mécanique des sols et des travaux de fondations, vol 12, pp 1765–1768 Sridharan A, Srinivasa Murthy BR, Vasudevan A (1989) Model tests on reinforced soil mattress on soft soil. In: Congrès intrnational de mécanique des sols et des travaux de fondations, vol 12, pp 1765–1768
25.
Zurück zum Zitat Murthy BRS, Sridharan A, Singh HR (1993) Analysis of reinforced soil beds. Indian Geotech J 23(4):447–458 Murthy BRS, Sridharan A, Singh HR (1993) Analysis of reinforced soil beds. Indian Geotech J 23(4):447–458
26.
Zurück zum Zitat Leu W, Tasa L (2001) Applications of geotextiles, geogrids, and geocells in Northern Minnesota. In: Geosynthetics Conference 2001, pp 809–821 Leu W, Tasa L (2001) Applications of geotextiles, geogrids, and geocells in Northern Minnesota. In: Geosynthetics Conference 2001, pp 809–821
27.
Zurück zum Zitat Shukla SK, Shukla SK (eds) (2002) Geosynthetics and their applications. Thomas Telford, London, p 430 Shukla SK, Shukla SK (eds) (2002) Geosynthetics and their applications. Thomas Telford, London, p 430
28.
Zurück zum Zitat Zhang J, Hurta G (2008) Comparison of geotextile and geogrid reinforcement on unpaved road. In: GeoCongress 2008: geosustainability and geohazard mitigation, pp 530–537 Zhang J, Hurta G (2008) Comparison of geotextile and geogrid reinforcement on unpaved road. In: GeoCongress 2008: geosustainability and geohazard mitigation, pp 530–537
29.
Zurück zum Zitat Kate JM, Venkatappa Rao G, Tyagi SK (1988) Evaluation of soil-reinforcement friction. Indian Geotech J 18(2):153–160 Kate JM, Venkatappa Rao G, Tyagi SK (1988) Evaluation of soil-reinforcement friction. Indian Geotech J 18(2):153–160
30.
Zurück zum Zitat Lopes ML (2002) Soil–geosynthetic interaction. In: Geosynthetics and their applications. Thomas Telford Publishing, pp 55–79 Lopes ML (2002) Soil–geosynthetic interaction. In: Geosynthetics and their applications. Thomas Telford Publishing, pp 55–79
31.
Zurück zum Zitat Moraci N, Cardile G, Gioffrè D, Mandaglio MC, Calvarano LS, Carbone L (2014) Soil geosynthetic interaction: design parameters from experimental and theoretical analysis. Transp Infrastruct Geotechnol 1(2):165–227CrossRef Moraci N, Cardile G, Gioffrè D, Mandaglio MC, Calvarano LS, Carbone L (2014) Soil geosynthetic interaction: design parameters from experimental and theoretical analysis. Transp Infrastruct Geotechnol 1(2):165–227CrossRef
32.
Zurück zum Zitat Choudhary AK, Krishna AM (2016) Experimental investigation of interface behaviour of different types of granular soil/geosynthetics. Int J Geosynth Ground Eng 2(1):4CrossRef Choudhary AK, Krishna AM (2016) Experimental investigation of interface behaviour of different types of granular soil/geosynthetics. Int J Geosynth Ground Eng 2(1):4CrossRef
33.
Zurück zum Zitat Jewell R, Milligan G, Sarsby RW, Dubois D (1985) Interaction between soil and geogrids. Polymer grid reinforcement: proceedings of a conference sponsored by the Science and Engineering Research Council and Netlon Ltd and held in London, 22–23 March 1984 Jewell R, Milligan G, Sarsby RW, Dubois D (1985) Interaction between soil and geogrids. Polymer grid reinforcement: proceedings of a conference sponsored by the Science and Engineering Research Council and Netlon Ltd and held in London, 22–23 March 1984
34.
Zurück zum Zitat Palmeira EM (2009) Soil–geosynthetic interaction: modelling and analysis. Geotext Geomembr 27(5):368–390CrossRef Palmeira EM (2009) Soil–geosynthetic interaction: modelling and analysis. Geotext Geomembr 27(5):368–390CrossRef
35.
Zurück zum Zitat Abdi MR, Mirzaeifar H (2017) Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test. Soils Found 57(6):1045–1058CrossRef Abdi MR, Mirzaeifar H (2017) Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test. Soils Found 57(6):1045–1058CrossRef
36.
Zurück zum Zitat Mir BA, Shah R (2018) How stiffness of reinforcement affects the type of major reinforcement force developed at various orientations in reinforced sand?. In: International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”. Springer, Cham, pp 137–151 Mir BA, Shah R (2018) How stiffness of reinforcement affects the type of major reinforcement force developed at various orientations in reinforced sand?. In: International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”. Springer, Cham, pp 137–151
37.
Zurück zum Zitat Khing KH, Das BM, Puri VK, Cook EE, Yen SC (1993) The bearing-capacity of a strip foundation on geogrid-reinforced sand. Geotext Geomembr 12(4):351–361CrossRef Khing KH, Das BM, Puri VK, Cook EE, Yen SC (1993) The bearing-capacity of a strip foundation on geogrid-reinforced sand. Geotext Geomembr 12(4):351–361CrossRef
38.
Zurück zum Zitat Otani J, Ochiai H, Yamamoto K (1998) Bearing capacity analysis of reinforced foundations on cohesive soil. Geotext Geomembr 16(4):195–206CrossRef Otani J, Ochiai H, Yamamoto K (1998) Bearing capacity analysis of reinforced foundations on cohesive soil. Geotext Geomembr 16(4):195–206CrossRef
39.
Zurück zum Zitat Dash SK, Rajagopal K, Krishnaswamy NR (2004) Performance of different geosynthetic reinforcement materials in sand foundations. Geosynth Int 11(1):35–42CrossRef Dash SK, Rajagopal K, Krishnaswamy NR (2004) Performance of different geosynthetic reinforcement materials in sand foundations. Geosynth Int 11(1):35–42CrossRef
40.
Zurück zum Zitat Demir A, Yildiz A, Laman M, Ornek M (2014) Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay. Acta Geotech 9(4):711–723CrossRef Demir A, Yildiz A, Laman M, Ornek M (2014) Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay. Acta Geotech 9(4):711–723CrossRef
41.
Zurück zum Zitat Chakraborty M, Kumar J (2014) Bearing capacity of circular foundations reinforced with geogrid sheets. Soils Found 54(4):820–832CrossRef Chakraborty M, Kumar J (2014) Bearing capacity of circular foundations reinforced with geogrid sheets. Soils Found 54(4):820–832CrossRef
42.
Zurück zum Zitat Mir BA, Basit M (2019) Experimental study of behaviour of geosynthetic reinforced two layer foundation system. In: Proceedings of 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (16ARC), Taipei, Taiwan, Paper ID: IGS-015, pp 1–4 Mir BA, Basit M (2019) Experimental study of behaviour of geosynthetic reinforced two layer foundation system. In: Proceedings of 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (16ARC), Taipei, Taiwan, Paper ID: IGS-015, pp 1–4
43.
Zurück zum Zitat Samtani NC, Sonpal RC (1989) Laboratory tests of strip footing on reinforced cohesive soil. J Geotech Eng 115(9):1326–1330CrossRef Samtani NC, Sonpal RC (1989) Laboratory tests of strip footing on reinforced cohesive soil. J Geotech Eng 115(9):1326–1330CrossRef
44.
Zurück zum Zitat Mandal JN, Sah HS (1992) Bearing capacity tests on geogrid-reinforced clay. Geotext Geomembr 11(3):327–333CrossRef Mandal JN, Sah HS (1992) Bearing capacity tests on geogrid-reinforced clay. Geotext Geomembr 11(3):327–333CrossRef
45.
Zurück zum Zitat Alawaji HA (2001) Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotext Geomembr 19(2):75–88CrossRef Alawaji HA (2001) Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotext Geomembr 19(2):75–88CrossRef
46.
Zurück zum Zitat Samadhiya N, Maheshwari P, Zsaki A, Basu P, Kundu A (2009) Strengthening of clay by geogrid reinforced granular pile. Int J Geotech Eng 3(3):377–386CrossRef Samadhiya N, Maheshwari P, Zsaki A, Basu P, Kundu A (2009) Strengthening of clay by geogrid reinforced granular pile. Int J Geotech Eng 3(3):377–386CrossRef
47.
Zurück zum Zitat Abdelhadi M (2013) Improving the bearing capacity of brown clay by using geogrid. Contemp Eng Sci 6:213–223CrossRef Abdelhadi M (2013) Improving the bearing capacity of brown clay by using geogrid. Contemp Eng Sci 6:213–223CrossRef
48.
Zurück zum Zitat Kolay PK, Kumar S, Tiwari D (2013) Improvement of bearing capacity of shallow foundation on geogrid reinforced silty clay and sand. J Constr Eng 2013:1–10CrossRef Kolay PK, Kumar S, Tiwari D (2013) Improvement of bearing capacity of shallow foundation on geogrid reinforced silty clay and sand. J Constr Eng 2013:1–10CrossRef
49.
Zurück zum Zitat Ingold TS (1983) A laboratory investigation of grid reinforcements in clay. Geotech Test J 6(3):112–119CrossRef Ingold TS (1983) A laboratory investigation of grid reinforcements in clay. Geotech Test J 6(3):112–119CrossRef
50.
Zurück zum Zitat Ramaswamy SD, Purushothaman P (1992) Model footings of geogrid reinforced clay. In: Proceedings of the Indian Geotechnical Conference on Geotechnique Today, vol 1, pp 183–186 Ramaswamy SD, Purushothaman P (1992) Model footings of geogrid reinforced clay. In: Proceedings of the Indian Geotechnical Conference on Geotechnique Today, vol 1, pp 183–186
51.
Zurück zum Zitat Shin EC, Das BM, Puri VK, Yen SC, Cook EE (1993) Bearing capacity of strip foundation on geogrid-reinforced clay. Geotech Test J 16(4):534–541CrossRef Shin EC, Das BM, Puri VK, Yen SC, Cook EE (1993) Bearing capacity of strip foundation on geogrid-reinforced clay. Geotech Test J 16(4):534–541CrossRef
52.
Zurück zum Zitat Aran S (2006) Base reinforcement with biaxial geogrid: long-term performance. Transp Res Rec 1975(1):114–123CrossRef Aran S (2006) Base reinforcement with biaxial geogrid: long-term performance. Transp Res Rec 1975(1):114–123CrossRef
53.
Zurück zum Zitat Cicek E, Guler E, Yetimoglu T (2019) Effects of the first reinforcement depth on different types of geosynthetics. Sci Iran 26(1):167–177 Cicek E, Guler E, Yetimoglu T (2019) Effects of the first reinforcement depth on different types of geosynthetics. Sci Iran 26(1):167–177
54.
Zurück zum Zitat Wayne MH, Han J, Akins K (1998) The design of geosynthetic reinforced foundations. In: Geosynthetics in foundation reinforcement and erosion control systems. ASCE, pp 1–18 Wayne MH, Han J, Akins K (1998) The design of geosynthetic reinforced foundations. In: Geosynthetics in foundation reinforcement and erosion control systems. ASCE, pp 1–18
55.
Zurück zum Zitat Patra CR, Das BM, Atalar C (2005) Bearing capacity of embedded strip foundation on geogrid-reinforced sand. Geotext Geomembr 23(5):454–462CrossRef Patra CR, Das BM, Atalar C (2005) Bearing capacity of embedded strip foundation on geogrid-reinforced sand. Geotext Geomembr 23(5):454–462CrossRef
56.
Zurück zum Zitat Das BM, Omar MT (1994) The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement. Geotech Geol Eng 12(2):133–141CrossRef Das BM, Omar MT (1994) The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement. Geotech Geol Eng 12(2):133–141CrossRef
57.
Zurück zum Zitat Cicek E, Guler E, Yetimoglu T (2015) Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils Found 55(4):661–677CrossRef Cicek E, Guler E, Yetimoglu T (2015) Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils Found 55(4):661–677CrossRef
58.
Zurück zum Zitat Moraci N, Cardile G (2012) Deformative behaviour of different geogrids embedded in a granular soil under monotonic and cyclic pullout loads. Geotext Geomembr 32:104–110CrossRef Moraci N, Cardile G (2012) Deformative behaviour of different geogrids embedded in a granular soil under monotonic and cyclic pullout loads. Geotext Geomembr 32:104–110CrossRef
59.
Zurück zum Zitat Mandal JN, Manjunath VR (1995) Bearing capacity of strip footing resting on reinforced sand subgrades. Constr Build Mater 9(1):35–38CrossRef Mandal JN, Manjunath VR (1995) Bearing capacity of strip footing resting on reinforced sand subgrades. Constr Build Mater 9(1):35–38CrossRef
60.
Zurück zum Zitat Huang CC, Hong LL (2000) Ultimate bearing capacity and settlement of footings on reinforced sandy ground. Soils Found 40(5):65–73CrossRef Huang CC, Hong LL (2000) Ultimate bearing capacity and settlement of footings on reinforced sandy ground. Soils Found 40(5):65–73CrossRef
61.
Zurück zum Zitat Dash SK, Sireesh S, Sitharam TG (2003) Behaviour of geocell-reinforced sand beds under circular footing. Proc Inst Civ Eng Ground Improv 7(3):111–115CrossRef Dash SK, Sireesh S, Sitharam TG (2003) Behaviour of geocell-reinforced sand beds under circular footing. Proc Inst Civ Eng Ground Improv 7(3):111–115CrossRef
62.
Zurück zum Zitat Latha GM, Somwanshi A (2009) Bearing capacity of square footings on geosynthetic reinforced sand. Geotext Geomembr 27(4):281–294CrossRef Latha GM, Somwanshi A (2009) Bearing capacity of square footings on geosynthetic reinforced sand. Geotext Geomembr 27(4):281–294CrossRef
63.
Zurück zum Zitat Sahu R, Patra CR, Das BM, Sivakugan N (2016) Bearing capacity of shallow strip foundation on geogrid-reinforced sand subjected to inclined load. Int J Geotech Eng 10(2):183–189CrossRef Sahu R, Patra CR, Das BM, Sivakugan N (2016) Bearing capacity of shallow strip foundation on geogrid-reinforced sand subjected to inclined load. Int J Geotech Eng 10(2):183–189CrossRef
64.
Zurück zum Zitat Latha GM, Somwanshi A (2009) Effect of reinforcement form on the bearing capacity of square footings on sand. Geotext Geomembr 27(6):409–422CrossRef Latha GM, Somwanshi A (2009) Effect of reinforcement form on the bearing capacity of square footings on sand. Geotext Geomembr 27(6):409–422CrossRef
65.
Zurück zum Zitat Kazi M, Shukla SK, Habibi D (2016) Behaviour of an embedded footing on geotextile-reinforced sand. Proc Inst Civ Eng Ground Improv 169(2):120–133CrossRef Kazi M, Shukla SK, Habibi D (2016) Behaviour of an embedded footing on geotextile-reinforced sand. Proc Inst Civ Eng Ground Improv 169(2):120–133CrossRef
66.
Zurück zum Zitat Benmebarek S, Djeridi S, Benmebarek N, Belounar L (2018) Improvement of bearing capacity of strip footing on reinforced sand. Int J Geotech Eng 12(6):537–545 Benmebarek S, Djeridi S, Benmebarek N, Belounar L (2018) Improvement of bearing capacity of strip footing on reinforced sand. Int J Geotech Eng 12(6):537–545
67.
Zurück zum Zitat Simac MR (1990) Connections for geogrid systems. Geotext Geomembr 9(4–6):537–546CrossRef Simac MR (1990) Connections for geogrid systems. Geotext Geomembr 9(4–6):537–546CrossRef
68.
Zurück zum Zitat Shahin HM, Nakai T, Morikawa Y, Masuda S, Mio S, Sugiyama H (2013) Bearing capacity of reinforced ground considering fixity conditions of geosynthetics. In: Proceedings of the international symposium on advances in foundation engineering, Singapore, pp 5–6 Shahin HM, Nakai T, Morikawa Y, Masuda S, Mio S, Sugiyama H (2013) Bearing capacity of reinforced ground considering fixity conditions of geosynthetics. In: Proceedings of the international symposium on advances in foundation engineering, Singapore, pp 5–6
69.
Zurück zum Zitat IS: 1498 (1970) Classification and identification of soils for general engineering purposes. Bureau of Indian Standards, New Delhi IS: 1498 (1970) Classification and identification of soils for general engineering purposes. Bureau of Indian Standards, New Delhi
70.
Zurück zum Zitat IS: 2720-Part 1 (1980) Indian Standard Code for preparation of soil samples. Bureau of Indian Standards, New Delhi IS: 2720-Part 1 (1980) Indian Standard Code for preparation of soil samples. Bureau of Indian Standards, New Delhi
71.
Zurück zum Zitat IS: 2720-Part 3(1) (1980) Method of test for soils: determination of specific gravity of fine grained soils. Bureau of Indian Standards, New Delhi IS: 2720-Part 3(1) (1980) Method of test for soils: determination of specific gravity of fine grained soils. Bureau of Indian Standards, New Delhi
72.
Zurück zum Zitat IS: 2720-Part 4 (1985) Method of test for soils: determination of grain size distribution. Bureau of Indian Standards, New Delhi IS: 2720-Part 4 (1985) Method of test for soils: determination of grain size distribution. Bureau of Indian Standards, New Delhi
73.
Zurück zum Zitat IS: 2720-Part 7 (1980) Method of test for soils: determination of water content-dry density relation using light compaction. Bureau of Indian Standards, New Delhi IS: 2720-Part 7 (1980) Method of test for soils: determination of water content-dry density relation using light compaction. Bureau of Indian Standards, New Delhi
74.
Zurück zum Zitat IS: 2720-Part 5 (1985) Method of test for soils: determination of Atterberg limits. Bureau of Indian Standards, New Delhi IS: 2720-Part 5 (1985) Method of test for soils: determination of Atterberg limits. Bureau of Indian Standards, New Delhi
75.
Zurück zum Zitat IS: 2720-Part 6 (1972) Method of test for soils: determination of shrinkage factors. Bureau of Indian Standards, New Delhi IS: 2720-Part 6 (1972) Method of test for soils: determination of shrinkage factors. Bureau of Indian Standards, New Delhi
76.
Zurück zum Zitat IS: 2720-Part 40 (1977/2002) Method of test for soils: determination of free swell index for fine grained soils. Bureau of Indian Standards, New Delhi IS: 2720-Part 40 (1977/2002) Method of test for soils: determination of free swell index for fine grained soils. Bureau of Indian Standards, New Delhi
77.
Zurück zum Zitat IS 2720-10 (1973) Methods of test for soils, Part 10: determination of shear strength parameter by unconfined compression test. Bureau of Indian Standards, New Delhi IS 2720-10 (1973) Methods of test for soils, Part 10: determination of shear strength parameter by unconfined compression test. Bureau of Indian Standards, New Delhi
78.
Zurück zum Zitat IS 2720-13 (1986) Methods of test for soils, part 13: determination of shear strength parameter by direct shear test. Bureau of Indian Standards, New Delhi IS 2720-13 (1986) Methods of test for soils, part 13: determination of shear strength parameter by direct shear test. Bureau of Indian Standards, New Delhi
79.
Zurück zum Zitat IS: 1888 (1982) Method of test for soils: determination of bearing capacity of soils by plate load test. Bureau of Indian Standards, New Delhi IS: 1888 (1982) Method of test for soils: determination of bearing capacity of soils by plate load test. Bureau of Indian Standards, New Delhi
80.
Zurück zum Zitat Milligan GWE, Fannin RJ, Farrar DM (1986) Model and full-scale tests of granular layers reinforced with a geogrid. In: Proceedings of third international conference on geotextiles, vol 1, pp 61–66 Milligan GWE, Fannin RJ, Farrar DM (1986) Model and full-scale tests of granular layers reinforced with a geogrid. In: Proceedings of third international conference on geotextiles, vol 1, pp 61–66
81.
Zurück zum Zitat Kurian NP, Beena KS, Kumar RK (1997) Settlement of reinforced sand in foundations. J Geotech Geoenviron Eng 123(9):818–827CrossRef Kurian NP, Beena KS, Kumar RK (1997) Settlement of reinforced sand in foundations. J Geotech Geoenviron Eng 123(9):818–827CrossRef
82.
Zurück zum Zitat Gupta R, Trivedi A (2009) Bearing capacity and settlement of footing resting on confined loose silty sands. Electron J Geotech Eng 14:1–14 Gupta R, Trivedi A (2009) Bearing capacity and settlement of footing resting on confined loose silty sands. Electron J Geotech Eng 14:1–14
83.
Zurück zum Zitat Abu-Farsakh M, Chen Q, Sharma R (2013) An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand. Soils Found 53(2):335–348CrossRef Abu-Farsakh M, Chen Q, Sharma R (2013) An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand. Soils Found 53(2):335–348CrossRef
84.
Zurück zum Zitat Chen Q, Abu-Farsakh MY, Sharma R, Zhang X (2007) Laboratory investigation of behavior of foundations on geosynthetic-reinforced clayey soil. Transp Res Rec 2004(1):28–38CrossRef Chen Q, Abu-Farsakh MY, Sharma R, Zhang X (2007) Laboratory investigation of behavior of foundations on geosynthetic-reinforced clayey soil. Transp Res Rec 2004(1):28–38CrossRef
85.
Zurück zum Zitat Akinmusuru JO, Akinbolade JA (1981). Stability of loaded footings on reinforced soil. J Geotech Geoenviron Eng 107(ASCE 16320 Proceeding) Akinmusuru JO, Akinbolade JA (1981). Stability of loaded footings on reinforced soil. J Geotech Geoenviron Eng 107(ASCE 16320 Proceeding)
86.
Zurück zum Zitat Singh HR (1988) Bearing capacity of reinforced soil beds. Ph.D. thesis (Doctoral dissertation, Indian Institute of Science) Singh HR (1988) Bearing capacity of reinforced soil beds. Ph.D. thesis (Doctoral dissertation, Indian Institute of Science)
87.
Zurück zum Zitat Binquet J, Lee KL (1975) Bearing capacity analysis of reinforced earth slabs. J Geotech Geoenviron Eng 101(ASCE# 11793 Proceeding) Binquet J, Lee KL (1975) Bearing capacity analysis of reinforced earth slabs. J Geotech Geoenviron Eng 101(ASCE# 11793 Proceeding)
88.
Zurück zum Zitat Aria S, Shukla SK, Mohyeddin A (2017) Optimum burial depth of geosynthetic reinforcement within sand bed based on numerical investigation. Int J Geotech Eng Aria S, Shukla SK, Mohyeddin A (2017) Optimum burial depth of geosynthetic reinforcement within sand bed based on numerical investigation. Int J Geotech Eng
89.
Zurück zum Zitat Garg KG, Saran S (1990) Evaluation of soil-reinforcement interface friction. In: Proc. Indian geotechnical conference, Bombay, pp 27–31 Garg KG, Saran S (1990) Evaluation of soil-reinforcement interface friction. In: Proc. Indian geotechnical conference, Bombay, pp 27–31
90.
Zurück zum Zitat Kumar A, Saran S (2000) Soil-reinforcement friction and tensile strength of geogrid. In: Proceedings of All India Workshop on Ground Improvement, Kurukshetra, pp 103–109 Kumar A, Saran S (2000) Soil-reinforcement friction and tensile strength of geogrid. In: Proceedings of All India Workshop on Ground Improvement, Kurukshetra, pp 103–109
91.
Zurück zum Zitat Chen Q (2007) An experimental study on characteristics and behavior of reinforced soil foundation Chen Q (2007) An experimental study on characteristics and behavior of reinforced soil foundation
92.
Zurück zum Zitat Nakai T, Shahin HM, Zhang F, Hinokio M, Kikumoto M, Yonaha S, Nishio A (2010) Bearing capacity of reinforced foundation subjected to pull-out loading in 2D and 3D conditions. Geotext Geomembr 28(3):268–280CrossRef Nakai T, Shahin HM, Zhang F, Hinokio M, Kikumoto M, Yonaha S, Nishio A (2010) Bearing capacity of reinforced foundation subjected to pull-out loading in 2D and 3D conditions. Geotext Geomembr 28(3):268–280CrossRef
93.
Zurück zum Zitat Guido VA, Chang DK, Sweeney MA (1986) Comparison of geogrid and geotextile reinforced earth slabs. Can Geotech J 23(4):435–440CrossRef Guido VA, Chang DK, Sweeney MA (1986) Comparison of geogrid and geotextile reinforced earth slabs. Can Geotech J 23(4):435–440CrossRef
94.
Zurück zum Zitat Puri VK, Hsiao JK, Chai JA (2005) Effect of vertical reinforcement on ultimate bearing capacity of sand subgrades. Electron J Geotech Eng G 10 Puri VK, Hsiao JK, Chai JA (2005) Effect of vertical reinforcement on ultimate bearing capacity of sand subgrades. Electron J Geotech Eng G 10
95.
Zurück zum Zitat Jha JN (2007) Effect of vertical reinforcement on bearing capacity of footing on sand. Indian Geotech J 37(1):64–78 Jha JN (2007) Effect of vertical reinforcement on bearing capacity of footing on sand. Indian Geotech J 37(1):64–78
96.
Zurück zum Zitat Shahin HM, Nakai T, Morikawa Y, Masuda S, Mio S (2017) Effective use of geosynthetics to increase bearing capacity of shallow foundations. Can Geotech J 54(12):1647–1658CrossRef Shahin HM, Nakai T, Morikawa Y, Masuda S, Mio S (2017) Effective use of geosynthetics to increase bearing capacity of shallow foundations. Can Geotech J 54(12):1647–1658CrossRef
97.
Zurück zum Zitat Omar MT, Das BM, Yen SC, Puri VK, Cook EE (1993) Ultimate bearing capacity of rectangular foundations on geogrid-reinforced sand. Geotech Test J 16(2):246–252CrossRef Omar MT, Das BM, Yen SC, Puri VK, Cook EE (1993) Ultimate bearing capacity of rectangular foundations on geogrid-reinforced sand. Geotech Test J 16(2):246–252CrossRef
98.
Zurück zum Zitat Omar MT, Das BM, Puri VK, Yen SC (1993) Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement. Can Geotech J 30(3):545–549CrossRef Omar MT, Das BM, Puri VK, Yen SC (1993) Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement. Can Geotech J 30(3):545–549CrossRef
99.
Zurück zum Zitat Das BM, Shin EC (1999) Bearing capacity of strip footing on geogrid reinforced sand. In: Proceedings of the 11th Asian Regional conference on soil mechanics and geotechnical engineering, Hong, Rotterdam, pp 189–192 Das BM, Shin EC (1999) Bearing capacity of strip footing on geogrid reinforced sand. In: Proceedings of the 11th Asian Regional conference on soil mechanics and geotechnical engineering, Hong, Rotterdam, pp 189–192
100.
Zurück zum Zitat Chen Q, Abu-Farsakh M (2015) Ultimate bearing capacity analysis of strip footings on reinforced soil foundation. Soils Found 55(1):74–85CrossRef Chen Q, Abu-Farsakh M (2015) Ultimate bearing capacity analysis of strip footings on reinforced soil foundation. Soils Found 55(1):74–85CrossRef
101.
Zurück zum Zitat Aria S, Kumar Shukla S, Mohyeddin A (2019) Numerical investigation of wraparound geotextile reinforcement technique for strengthening foundation soil. Int J Geomech 19(4):04019003CrossRef Aria S, Kumar Shukla S, Mohyeddin A (2019) Numerical investigation of wraparound geotextile reinforcement technique for strengthening foundation soil. Int J Geomech 19(4):04019003CrossRef
102.
Zurück zum Zitat Kazi M, Shukla SK, Habibi D (2015) Behavior of embedded strip footing on sand bed reinforced with multilayer geotextile with wraparound ends. Int J Geotech Eng 9(5):437–452CrossRef Kazi M, Shukla SK, Habibi D (2015) Behavior of embedded strip footing on sand bed reinforced with multilayer geotextile with wraparound ends. Int J Geotech Eng 9(5):437–452CrossRef
103.
Zurück zum Zitat Kazi M, Shukla SK, Habibi D (2015) An improved method to increase the load-bearing capacity of strip footing resting on geotextile-reinforced sand bed. Indian Geotech J 45(1):98–109CrossRef Kazi M, Shukla SK, Habibi D (2015) An improved method to increase the load-bearing capacity of strip footing resting on geotextile-reinforced sand bed. Indian Geotech J 45(1):98–109CrossRef
104.
Zurück zum Zitat Makkar FM, Chandrakaran S, Sankar N (2017) Behaviour of model square footing resting on sand reinforced with three-dimensional geogrid. Int J Geosynth Ground Eng 3(1):3CrossRef Makkar FM, Chandrakaran S, Sankar N (2017) Behaviour of model square footing resting on sand reinforced with three-dimensional geogrid. Int J Geosynth Ground Eng 3(1):3CrossRef
105.
Zurück zum Zitat Gabr MA, Dodson R, Collin JG (1998) A study of stress distribution in geogrid-reinforced sand. In: Geosynthetics in foundation reinforcement and erosion control systems. ASCE, pp 62–76 Gabr MA, Dodson R, Collin JG (1998) A study of stress distribution in geogrid-reinforced sand. In: Geosynthetics in foundation reinforcement and erosion control systems. ASCE, pp 62–76
106.
Zurück zum Zitat Kumar A, Walia BS, Saran S (2005) Pressure–settlement characteristics of rectangular footings on reinforced sand. Geotech Geol Eng 23(4):469–481CrossRef Kumar A, Walia BS, Saran S (2005) Pressure–settlement characteristics of rectangular footings on reinforced sand. Geotech Geol Eng 23(4):469–481CrossRef
107.
Zurück zum Zitat Cicek E, Guler E, Yetimoglu T (2014) Comparison of measured and theoretical pressure distribution below strip footings on sand soil. Int J Geomech 14(5):06014009CrossRef Cicek E, Guler E, Yetimoglu T (2014) Comparison of measured and theoretical pressure distribution below strip footings on sand soil. Int J Geomech 14(5):06014009CrossRef
Metadaten
Titel
Plate load tests for investigation of the load–settlement behaviour of shallow foundation on bitumen-coated geogrid reinforced soil bed
verfasst von
Asif Akbar
Javed Ahmad Bhat
Bashir Ahmed Mir
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-020-00397-6

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe