Skip to main content
Erschienen in: Applied Composite Materials 5/2011

01.10.2011

PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties

verfasst von: Antoine Le Duigou, Jean-Marc Deux, Peter Davies, Christophe Baley

Erschienen in: Applied Composite Materials | Ausgabe 5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes the manufacture and mechanical characterization of a sandwich material which is 100% bio-sourced. The flax mat/PLLA facings and balsa core can also be composted at end of service life. Manufacture is by vacuum bag moulding. The optimum moulding time and temperature are a compromise between ensuring good impregnation and avoiding degradation, and holding for 60 min at 180°C was found to be satisfactory. The mechanical properties of the bio-sandwich obtained are compared to those of a traditional glass reinforced polyester balsa sandwich. The flexural strength is 30% lower, as predicted based on the facing properties. Skin/core adhesion is also measured using debonding tests. Crack propagation occurs at the skin/core interface in the traditional sandwich but within the facing in the bio-sandwich. The impregnation of the core in the two materials is examined using X-ray micro-tomography.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng., 276–277(1), 1–24.CrossRef Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng., 276–277(1), 1–24.CrossRef
2.
Zurück zum Zitat John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydr. Polym., 71(3), 343–364.CrossRef John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydr. Polym., 71(3), 343–364.CrossRef
3.
Zurück zum Zitat Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers–An overview. Prog. Polym. Sci., 34(9), 982–1021.CrossRef Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers–An overview. Prog. Polym. Sci., 34(9), 982–1021.CrossRef
4.
Zurück zum Zitat Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., et al. (2007). Natural fiber eco-composites. Polym. Compos., 28(1), 98–107.CrossRef Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., et al. (2007). Natural fiber eco-composites. Polym. Compos., 28(1), 98–107.CrossRef
5.
Zurück zum Zitat Bodros, E., Pillin, I., Montrelay, N., & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol., 67(3–4), 462–470.CrossRef Bodros, E., Pillin, I., Montrelay, N., & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol., 67(3–4), 462–470.CrossRef
6.
Zurück zum Zitat Plackett, D., Andersen, T. L., Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on -polylactide and jute fibres. Compos. Sci. Technol., 63(9), 1287–1296.CrossRef Plackett, D., Andersen, T. L., Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on -polylactide and jute fibres. Compos. Sci. Technol., 63(9), 1287–1296.CrossRef
7.
Zurück zum Zitat Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. A, 39(9), 1471–1478.CrossRef Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. A, 39(9), 1471–1478.CrossRef
8.
Zurück zum Zitat Ochi, S. (2008). Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater., 40(4–5), 446–452.CrossRef Ochi, S. (2008). Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater., 40(4–5), 446–452.CrossRef
9.
Zurück zum Zitat Le Duigou, A., Davies, P., & Baley, C. (2009). Seawater ageing of Flax/PLLA biocomposites. Polym. Degrad. Stab., 94, 1151–1162.CrossRef Le Duigou, A., Davies, P., & Baley, C. (2009). Seawater ageing of Flax/PLLA biocomposites. Polym. Degrad. Stab., 94, 1151–1162.CrossRef
10.
Zurück zum Zitat Islam, M. S., Pickering, K. L., & Foreman, N. J. (2010). Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. Polym. Degrad. Stab., 95(1), 59–65.CrossRef Islam, M. S., Pickering, K. L., & Foreman, N. J. (2010). Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. Polym. Degrad. Stab., 95(1), 59–65.CrossRef
11.
Zurück zum Zitat Hu, R., Sun, M., and Lim, J.: Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater. Design, (2010). Hu, R., Sun, M., and Lim, J.: Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater. Design, (2010).
12.
Zurück zum Zitat Lystrup, A. (2006). Vacuum consolidation of thermoplastic composites for wind turbine rotor blades. in 27th Riso International Symposium on material science: Polymer composites materials for wind power turbines. Roskilde: Riso National Laboratory. Lystrup, A. (2006). Vacuum consolidation of thermoplastic composites for wind turbine rotor blades. in 27th Riso International Symposium on material science: Polymer composites materials for wind power turbines. Roskilde: Riso National Laboratory.
13.
Zurück zum Zitat Ijaz, M., Robinson, M., & Gibson, A. G. (2007). Cooling and crystallisation behaviour during vacuum-consolidation of commingled thermoplastic composites. Compos. A, 38(3), 828–842.CrossRef Ijaz, M., Robinson, M., & Gibson, A. G. (2007). Cooling and crystallisation behaviour during vacuum-consolidation of commingled thermoplastic composites. Compos. A, 38(3), 828–842.CrossRef
14.
Zurück zum Zitat Bronsted, P., Liholt, H., & Lystrup, A. (2005). Composite material for wind power turbine blades. Annu. Rev. Mater. Sci., 35, 505–538.CrossRef Bronsted, P., Liholt, H., & Lystrup, A. (2005). Composite material for wind power turbine blades. Annu. Rev. Mater. Sci., 35, 505–538.CrossRef
16.
Zurück zum Zitat Karlsson, K. F., & Åström. (1997). Manufacturing and applications of structural sandwich components. Compos. A, 28(2), 97–111.CrossRef Karlsson, K. F., & Åström. (1997). Manufacturing and applications of structural sandwich components. Compos. A, 28(2), 97–111.CrossRef
17.
Zurück zum Zitat Ning, H., Janowski, G. M., Vaidya, U. K., & Husman, G. (2007). Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct., 80(1), 82–91.CrossRef Ning, H., Janowski, G. M., Vaidya, U. K., & Husman, G. (2007). Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct., 80(1), 82–91.CrossRef
18.
Zurück zum Zitat Scudamore, R., & Cantwell, W. J. (2002). The effect of moisture and loading rate on the interfacial fracture properties of sandwich structures. Polym Compos, 23(3), 406–407.CrossRef Scudamore, R., & Cantwell, W. J. (2002). The effect of moisture and loading rate on the interfacial fracture properties of sandwich structures. Polym Compos, 23(3), 406–407.CrossRef
19.
Zurück zum Zitat Cantwell, W. J., Scudamore, R., Ratcliffe, J., & Davies, P. (1999). Interfacial fracture in sandwich laminates. Compos. Sci. Technol., 59(14), 2079–2085.CrossRef Cantwell, W. J., Scudamore, R., Ratcliffe, J., & Davies, P. (1999). Interfacial fracture in sandwich laminates. Compos. Sci. Technol., 59(14), 2079–2085.CrossRef
20.
Zurück zum Zitat Dweib, M. A., Hu, B., O’Donnell, A., Shenton, H. W., & Wool, R. P. (2004). All natural composite sandwich beams for structural applications. Compos. Struct., 63(2), 147–157.CrossRef Dweib, M. A., Hu, B., O’Donnell, A., Shenton, H. W., & Wool, R. P. (2004). All natural composite sandwich beams for structural applications. Compos. Struct., 63(2), 147–157.CrossRef
21.
Zurück zum Zitat Baley, C., Perrot, Y., Busnel, F., Guezenoc, H., & Davies, P. (2006). Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater. Lett., 60(24), 2984–2987.CrossRef Baley, C., Perrot, Y., Busnel, F., Guezenoc, H., & Davies, P. (2006). Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater. Lett., 60(24), 2984–2987.CrossRef
22.
Zurück zum Zitat Baley, C., & Bodros, E. (2006). Biocomposite à matrice PLLA renforcés par des mats de lin. Rev. Compos. Mater. Av., 16(1), 129–139. Baley, C., & Bodros, E. (2006). Biocomposite à matrice PLLA renforcés par des mats de lin. Rev. Compos. Mater. Av., 16(1), 129–139.
23.
Zurück zum Zitat Le Duigou, A., Davies, P., & Baley, C. (2009). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRef Le Duigou, A., Davies, P., & Baley, C. (2009). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRef
24.
Zurück zum Zitat Charlet, K., Baley, C., Morvan, C., Jernot, J. P., Gomina, M., & Bréard, J. (2007). Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos. A, 38(8), 1912–1921.CrossRef Charlet, K., Baley, C., Morvan, C., Jernot, J. P., Gomina, M., & Bréard, J. (2007). Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos. A, 38(8), 1912–1921.CrossRef
25.
Zurück zum Zitat Baley, C. (2002). Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. A, 33(7), 939–948.CrossRef Baley, C. (2002). Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. A, 33(7), 939–948.CrossRef
26.
Zurück zum Zitat Kelly, A., & Tyson, W. (1965). Tensile properties of fibre reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids, 13, 329–350.CrossRef Kelly, A., & Tyson, W. (1965). Tensile properties of fibre reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids, 13, 329–350.CrossRef
27.
Zurück zum Zitat Le Duigou, A., Davies, P., & Baley, C. (2010). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRef Le Duigou, A., Davies, P., & Baley, C. (2010). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRef
28.
Zurück zum Zitat Perrot, Y.: Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navales de plaisance, in PhD Thesis (In french), Université de bretagne sud (2006), Lorient. Perrot, Y.: Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navales de plaisance, in PhD Thesis (In french), Université de bretagne sud (2006), Lorient.
29.
Zurück zum Zitat ASTM-C393: Standard test method for Flexural properties of sandwich constructions. ASTM, (2000). ASTM-C393: Standard test method for Flexural properties of sandwich constructions. ASTM, (2000).
30.
Zurück zum Zitat Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams- I. Analysis of fracture specimens. Eng. Fract. Mech., 47(6), 813–824.CrossRef Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams- I. Analysis of fracture specimens. Eng. Fract. Mech., 47(6), 813–824.CrossRef
31.
Zurück zum Zitat Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams-II. Experimental investigation. Eng. Fract. Mech., 47(6), 825–841.CrossRef Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams-II. Experimental investigation. Eng. Fract. Mech., 47(6), 825–841.CrossRef
32.
Zurück zum Zitat Ratcliffe, J.: Sizing single cantilever beam specimens for characterizing facesheet/core peel debonding in sandwich structure. NASA/TP-2010-216169, (2010) Ratcliffe, J.: Sizing single cantilever beam specimens for characterizing facesheet/core peel debonding in sandwich structure. NASA/TP-2010-216169, (2010)
33.
Zurück zum Zitat Berry, J.: Determination of fracture surface energies by the cleavage technique. J. Appl. Physi. 34, (1963) Berry, J.: Determination of fracture surface energies by the cleavage technique. J. Appl. Physi. 34, (1963)
34.
Zurück zum Zitat Hounsfield, G. (1973). Computerized transverse axial scanning tomography: Part I, description of system. Br. J. Radiol., 46, 1016–1022.CrossRef Hounsfield, G. (1973). Computerized transverse axial scanning tomography: Part I, description of system. Br. J. Radiol., 46, 1016–1022.CrossRef
35.
Zurück zum Zitat Bossi, R., Friddell, K., and Lowrey, A.: Computed Tomography. In: Summersccales J.(ed.) Non-destructive testing of fibre reinforced composites, Elsevier, (1990) Bossi, R., Friddell, K., and Lowrey, A.: Computed Tomography. In: Summersccales J.(ed.) Non-destructive testing of fibre reinforced composites, Elsevier, (1990)
36.
Zurück zum Zitat Bayraktar, E., Antolovich, S., & Bathias, C. (2008). New developments in non-destructive controls of the composite materials and applications in manufacturing engineering. J. Mater. Process. Technol., 206(1–3), 30–44.CrossRef Bayraktar, E., Antolovich, S., & Bathias, C. (2008). New developments in non-destructive controls of the composite materials and applications in manufacturing engineering. J. Mater. Process. Technol., 206(1–3), 30–44.CrossRef
37.
Zurück zum Zitat Davies, P., Choqueuse, D., and Bourbouze, G.: Micro-tomography to study high performance sandwich structures. J. Sandw. Struct. Mater., (2009, In press) Davies, P., Choqueuse, D., and Bourbouze, G.: Micro-tomography to study high performance sandwich structures. J. Sandw. Struct. Mater., (2009, In press)
38.
Zurück zum Zitat Van de Velde, K., & Baetens, E. (2001). Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol. Mater. Eng., 286(6), 342–349.CrossRef Van de Velde, K., & Baetens, E. (2001). Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol. Mater. Eng., 286(6), 342–349.CrossRef
39.
Zurück zum Zitat Kopinke, F., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym. Degrad. Stab., 53, 329–342.CrossRef Kopinke, F., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym. Degrad. Stab., 53, 329–342.CrossRef
40.
Zurück zum Zitat Baley, C., Morvan, C., & Grohens, Y. (2004). Influence of the absorbed water on the tensile strength of flax fibers. In V. Y. Grohens (Ed.), Polymer-Solvent complexes and intercalates. Lorient: Wiley-VCH. Baley, C., Morvan, C., & Grohens, Y. (2004). Influence of the absorbed water on the tensile strength of flax fibers. In V. Y. Grohens (Ed.), Polymer-Solvent complexes and intercalates. Lorient: Wiley-VCH.
41.
Zurück zum Zitat Placet, V. (2009). Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos. A, 40(8), 1111–1118.CrossRef Placet, V. (2009). Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos. A, 40(8), 1111–1118.CrossRef
42.
Zurück zum Zitat Van de velde, K., & Kiekens, P. (2002). Thermal degradation of flax: determination of kinetic parameter with thermogravimetric analysis. J. Appl. Polym. Sci., 83(12), 2343–2464.CrossRef Van de velde, K., & Kiekens, P. (2002). Thermal degradation of flax: determination of kinetic parameter with thermogravimetric analysis. J. Appl. Polym. Sci., 83(12), 2343–2464.CrossRef
43.
Zurück zum Zitat Liu, X., Zou, Y., Li, W., Cao, G., & Chen, W. (2006). Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab., 91(12), 3259–3265.CrossRef Liu, X., Zou, Y., Li, W., Cao, G., & Chen, W. (2006). Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab., 91(12), 3259–3265.CrossRef
44.
Zurück zum Zitat Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos. A, 37(10), 1626–1637.CrossRef Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos. A, 37(10), 1626–1637.CrossRef
45.
Zurück zum Zitat Guillon, D.: Fibre de verre de renforcement. Technique ed l’ingénieur, 1995. A2 110. Guillon, D.: Fibre de verre de renforcement. Technique ed l’ingénieur, 1995. A2 110.
46.
Zurück zum Zitat Hermann, A. S., Nickel, J., & Riedel, U. (1998). Construction materials based upon biologically renewable resources—from components to finished parts. Polym. Degrad. Stab., 59, 251–261.CrossRef Hermann, A. S., Nickel, J., & Riedel, U. (1998). Construction materials based upon biologically renewable resources—from components to finished parts. Polym. Degrad. Stab., 59, 251–261.CrossRef
47.
Zurück zum Zitat Ouagne, P., Bizet, L., Baley, C., and Bréard, J.: Analysis of the film stacking processing parameters for PLLA/flax fibre fiber biocomposites. J. Compos. Mater. 0, 1–13 (2009) Ouagne, P., Bizet, L., Baley, C., and Bréard, J.: Analysis of the film stacking processing parameters for PLLA/flax fibre fiber biocomposites. J. Compos. Mater. 0, 1–13 (2009)
49.
Zurück zum Zitat Cantwell, W. J., & Davies, P. (1996). A study of skin-Core adhesion in glass fibre reinforced sandwich materials. Appl. Compos. Mater., 3, 407–420.CrossRef Cantwell, W. J., & Davies, P. (1996). A study of skin-Core adhesion in glass fibre reinforced sandwich materials. Appl. Compos. Mater., 3, 407–420.CrossRef
50.
Zurück zum Zitat Gibson, L. and Asby, M.: Cellular solids-structure & properties, ed. Press, P. 1988. Gibson, L. and Asby, M.: Cellular solids-structure & properties, ed. Press, P. 1988.
51.
Zurück zum Zitat Quéré, D.: Loi du mouillage et de l’imprégnation. Technique de l’ingénieur. J2 140. Quéré, D.: Loi du mouillage et de l’imprégnation. Technique de l’ingénieur. J2 140.
52.
Zurück zum Zitat Baley, C., Grohens, Y., Busnel, F., & Davies, P. (2004). Application of interlaminar test to marine composites. Relation between glass fibre/polymer interfaces and interlaminar properties of marine composites. Appl. Compos. Mater., 11, 77–98.CrossRef Baley, C., Grohens, Y., Busnel, F., & Davies, P. (2004). Application of interlaminar test to marine composites. Relation between glass fibre/polymer interfaces and interlaminar properties of marine composites. Appl. Compos. Mater., 11, 77–98.CrossRef
53.
Zurück zum Zitat Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromol. Biosci., 4(9), 835–864.CrossRef Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromol. Biosci., 4(9), 835–864.CrossRef
54.
Zurück zum Zitat Ferreira, B. M. P., Zavaglia, C. A. C., & Duek, E. A. R. (2002). Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci., 86(11), 2898–2906.CrossRef Ferreira, B. M. P., Zavaglia, C. A. C., & Duek, E. A. R. (2002). Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci., 86(11), 2898–2906.CrossRef
55.
Zurück zum Zitat Nardin, M.: Interface fibre-matrice dans les matériaux composites- Application aux fibres végétales. Renforcement des polymères par des fibres végétales- Journée Scientifique et Technique- AMAC, ed. avancés, R.d.c.e.d.m. Vol. 16, Hermes-Lavoisier, (2006) Nardin, M.: Interface fibre-matrice dans les matériaux composites- Application aux fibres végétales. Renforcement des polymères par des fibres végétales- Journée Scientifique et Technique- AMAC, ed. avancés, R.d.c.e.d.m. Vol. 16, Hermes-Lavoisier, (2006)
Metadaten
Titel
PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties
verfasst von
Antoine Le Duigou
Jean-Marc Deux
Peter Davies
Christophe Baley
Publikationsdatum
01.10.2011
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 5/2011
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-010-9173-8

Weitere Artikel der Ausgabe 5/2011

Applied Composite Materials 5/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.