Skip to main content
Erschienen in: Journal of Materials Science 19/2017

27.06.2017 | Polymers

Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties

verfasst von: Cuiyun Liu, Hongyu Liu, Chang Lu, Keyong Tang, Yuqing Zhang

Erschienen in: Journal of Materials Science | Ausgabe 19/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface-functionalized graphene oxide (GO) was prepared by reacting GO with polyethyleneimine (PEI) at room temperature. Fourier transform infrared spectroscopy indicates the preparation of PEI-decorated GO (PEI-GO) and dual roles of PEI in preparing PEI-GO. Temperature-sensitive PEI-GO/PNIPAm composite hydrogels with porous structure were prepared by an in situ freezing polymerization method. The composite hydrogels were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and differential scanning calorimetry. The swelling and deswelling properties, temperature sensitivity and mechanical performance of as-prepared composite hydrogels were also investigated systematically. The rapid swelling and deswelling rates as well as superior mechanical property were achieved by introducing robust PEI-GO sheets into the porous polymer matrix. The maximum tensile strength of composite hydrogel was 34 kPa when the content of PEI-GO was 3.6%, three times larger than that of neat PNIPAm hydrogel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ziółkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D (2016) Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. J Mater Sci 51:1392–1399. doi:10.1007/s10853-015-9458-2 CrossRef Ziółkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D (2016) Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. J Mater Sci 51:1392–1399. doi:10.​1007/​s10853-015-9458-2 CrossRef
2.
Zurück zum Zitat Haraguchi K, Li HJ, Matsuda K, Toru Takehisa A, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels. Macromolecules 38:33–41CrossRef Haraguchi K, Li HJ, Matsuda K, Toru Takehisa A, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels. Macromolecules 38:33–41CrossRef
3.
Zurück zum Zitat Yasumoto A, Gotoh H, Gotoh Y et al (2016) Highly responsive hydrogel prepared using poly(N-isopropylacrylamide)-grafted polyrotaxane as a building block designed by reversible deactivation radical polymerization and click chemistry. Macromolecules 50:364–374CrossRef Yasumoto A, Gotoh H, Gotoh Y et al (2016) Highly responsive hydrogel prepared using poly(N-isopropylacrylamide)-grafted polyrotaxane as a building block designed by reversible deactivation radical polymerization and click chemistry. Macromolecules 50:364–374CrossRef
4.
Zurück zum Zitat Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483CrossRef Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483CrossRef
5.
Zurück zum Zitat Cheng C, Xia D, Zhang X, Chen L, Zhang Q (2015) Biocompatible poly(N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J Mater Sci 50:4914–4925. doi:10.1007/s10853-015-9036-7 CrossRef Cheng C, Xia D, Zhang X, Chen L, Zhang Q (2015) Biocompatible poly(N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J Mater Sci 50:4914–4925. doi:10.​1007/​s10853-015-9036-7 CrossRef
6.
Zurück zum Zitat Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 28:7717–7723CrossRef Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 28:7717–7723CrossRef
7.
Zurück zum Zitat Xue W, Champ S, Huglina MB (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic). Eur Polym J 40:467–476CrossRef Xue W, Champ S, Huglina MB (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic). Eur Polym J 40:467–476CrossRef
8.
Zurück zum Zitat Strachotová B, Strachota A, Uchman M et al (2007) Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer 48:1471–1482CrossRef Strachotová B, Strachota A, Uchman M et al (2007) Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer 48:1471–1482CrossRef
9.
Zurück zum Zitat Alzari V, Nuvoli D, Scognamillo S et al (2011) Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733CrossRef Alzari V, Nuvoli D, Scognamillo S et al (2011) Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733CrossRef
10.
Zurück zum Zitat Hou C, Zhang Q, Li Y, Wang H (2012) Graphene–polymer hydrogels with stimulus-sensitive volume changes. Carbon 50:1959–1965CrossRef Hou C, Zhang Q, Li Y, Wang H (2012) Graphene–polymer hydrogels with stimulus-sensitive volume changes. Carbon 50:1959–1965CrossRef
11.
Zurück zum Zitat Huerta-Angeles G, Hishchak K, Strachota A, Strachota B, Šlouf M, Matějka L (2014) Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur Polym J 59:341–352CrossRef Huerta-Angeles G, Hishchak K, Strachota A, Strachota B, Šlouf M, Matějka L (2014) Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur Polym J 59:341–352CrossRef
12.
Zurück zum Zitat Guo H, Brûlet A, Rajamohanan PR, Marcellan A, Sanson N, Hourdet D (2015) Influence of topology of LCST-based graft copolymers on responsive assembling in aqueous media. Polymer 60:164–175CrossRef Guo H, Brûlet A, Rajamohanan PR, Marcellan A, Sanson N, Hourdet D (2015) Influence of topology of LCST-based graft copolymers on responsive assembling in aqueous media. Polymer 60:164–175CrossRef
13.
14.
Zurück zum Zitat Zheng S, Wang T, Liu D, Liu X, Wang C, Tong Z (2013) Fast deswelling and highly extensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared by freezing polymerization. Polymer 54:1846–1852CrossRef Zheng S, Wang T, Liu D, Liu X, Wang C, Tong Z (2013) Fast deswelling and highly extensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared by freezing polymerization. Polymer 54:1846–1852CrossRef
15.
Zurück zum Zitat Jana M, Saha S, Samanta P, Murmu NC, Lee JH, Kuila T (2015) Investigation of the capacitive performance of tobacco solution reduced graphene oxide. Mater Chem Phys 151:72–80CrossRef Jana M, Saha S, Samanta P, Murmu NC, Lee JH, Kuila T (2015) Investigation of the capacitive performance of tobacco solution reduced graphene oxide. Mater Chem Phys 151:72–80CrossRef
16.
Zurück zum Zitat Srivastava M, Singh J, Kuila T, Layek RK, Kim NH, Lee JH (2015) Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7:4820–4868CrossRef Srivastava M, Singh J, Kuila T, Layek RK, Kim NH, Lee JH (2015) Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7:4820–4868CrossRef
17.
Zurück zum Zitat Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef
18.
Zurück zum Zitat Liu H, Kuila T, Kim N, Ku BC, Lee J (2013) In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J Mater Chem A 1:3739–3746CrossRef Liu H, Kuila T, Kim N, Ku BC, Lee J (2013) In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J Mater Chem A 1:3739–3746CrossRef
19.
Zurück zum Zitat Liu H, Bandyopadhyay P, Kim NH, Moon B, Lee JH (2016) Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polym Test 50:49–56CrossRef Liu H, Bandyopadhyay P, Kim NH, Moon B, Lee JH (2016) Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polym Test 50:49–56CrossRef
20.
Zurück zum Zitat Chen JH, Xing HT, Sun X et al (2015) Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl Surf Sci 356:355–363CrossRef Chen JH, Xing HT, Sun X et al (2015) Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl Surf Sci 356:355–363CrossRef
21.
Zurück zum Zitat Jana M, Kumar JS, Khanra P et al (2016) Superior performance of asymmetric supercapacitor based on reduced graphene oxide–manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials. J Power Sources 303:222–233CrossRef Jana M, Kumar JS, Khanra P et al (2016) Superior performance of asymmetric supercapacitor based on reduced graphene oxide–manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials. J Power Sources 303:222–233CrossRef
22.
Zurück zum Zitat Long C, Li Y, Du Q et al (2017) High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155:345–353CrossRef Long C, Li Y, Du Q et al (2017) High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155:345–353CrossRef
23.
Zurück zum Zitat Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435CrossRef Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435CrossRef
24.
Zurück zum Zitat Das S, Irin F, Ahmed HST et al (2011) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53:2485–2494CrossRef Das S, Irin F, Ahmed HST et al (2011) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53:2485–2494CrossRef
25.
Zurück zum Zitat Zhou H, Zhai HJ (2016) Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim Acta 215:339–345CrossRef Zhou H, Zhai HJ (2016) Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim Acta 215:339–345CrossRef
26.
Zurück zum Zitat Liu H, Bandyopadhyay P, Kshetri T et al (2017) Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application. Compos Part B Eng 114:339–347CrossRef Liu H, Bandyopadhyay P, Kshetri T et al (2017) Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application. Compos Part B Eng 114:339–347CrossRef
27.
Zurück zum Zitat Dizaji AK, Mortaheb HR, Mokhtarani B (2016) Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel. J Mater Sci 51:1–12. doi:10.1007/s10853-016-0237-5 CrossRef Dizaji AK, Mortaheb HR, Mokhtarani B (2016) Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel. J Mater Sci 51:1–12. doi:10.​1007/​s10853-016-0237-5 CrossRef
28.
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef
29.
Zurück zum Zitat Kuila T, Khanra P, Bose S et al (2011) Preparation of water-dispersible graphene by facile surface modification of graphite oxide. Nanotechnology 22:305710CrossRef Kuila T, Khanra P, Bose S et al (2011) Preparation of water-dispersible graphene by facile surface modification of graphite oxide. Nanotechnology 22:305710CrossRef
30.
Zurück zum Zitat Sun S, Wu P (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21:4095–4097CrossRef Sun S, Wu P (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21:4095–4097CrossRef
31.
Zurück zum Zitat Shechter I, Ramon O, Portnaya I, Paz Y, Livney YD (2009) Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) solutions. Macromolecules 43:480–487CrossRef Shechter I, Ramon O, Portnaya I, Paz Y, Livney YD (2009) Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) solutions. Macromolecules 43:480–487CrossRef
32.
Zurück zum Zitat Strachota B, Matějka L, Sikora A et al (2017) Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: structure and phase evolution. Soft Matter 13:1244–1256CrossRef Strachota B, Matějka L, Sikora A et al (2017) Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: structure and phase evolution. Soft Matter 13:1244–1256CrossRef
33.
Zurück zum Zitat Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef
34.
Zurück zum Zitat Zhe W, Yang S, Wang DW, Feng L, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922CrossRef Zhe W, Yang S, Wang DW, Feng L, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922CrossRef
35.
Zurück zum Zitat Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167CrossRef Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167CrossRef
36.
Zurück zum Zitat Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.1007/s10853-016-9874-y CrossRef Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.​1007/​s10853-016-9874-y CrossRef
38.
Zurück zum Zitat Berke B, Czakkel O, Porcar L, Geissler E, László K (2016) Static and dynamic behaviour of responsive graphene oxide-poly(N-isopropylacrylamide) composite gels. Soft Matter 12:7166–7173CrossRef Berke B, Czakkel O, Porcar L, Geissler E, László K (2016) Static and dynamic behaviour of responsive graphene oxide-poly(N-isopropylacrylamide) composite gels. Soft Matter 12:7166–7173CrossRef
Metadaten
Titel
Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties
verfasst von
Cuiyun Liu
Hongyu Liu
Chang Lu
Keyong Tang
Yuqing Zhang
Publikationsdatum
27.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1301-5

Weitere Artikel der Ausgabe 19/2017

Journal of Materials Science 19/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.