Skip to main content

2018 | OriginalPaper | Buchkapitel

Porous Structure Design in Tissue Engineering Using Anisotropic Radial Basis Functions

verfasst von : Ye Guo, Ke Liu, Zeyun Yu

Erschienen in: Advances in Visual Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid development of additive manufacturing in last decades has greatly improved the quality of medical implants and widened its applications in tissue engineering. For the purpose of creating realistic porous scaffolds, a series of diverse methodologies are attempted to help simplify the manufacturing process and to improve the scaffold quality. Among these approaches, implicit surface methods based on geometric models have gained much attention for its flexibility to generate porous structures. In this paper, an innovative heterogeneous modeling method using anisotropic radial basis functions (ARBFs) is introduced for designing porous structures with controlled porosity and various internal architectures. By re-defining the distance method for the radial basis functions, the interpolated porous shape can be customized according to different requirements. Numerous experiments have been conducted to show the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bucklen, B.S., Wettergreen, W.A., Yuksel, E., Liebschner, M.A.K.: Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys. Prototyp. 3, 13–23 (2008)CrossRef Bucklen, B.S., Wettergreen, W.A., Yuksel, E., Liebschner, M.A.K.: Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys. Prototyp. 3, 13–23 (2008)CrossRef
2.
Zurück zum Zitat Chandran, S.: Introduction to kd-trees. Department of Computer Science, University of Maryland, Technical report (2004) Chandran, S.: Introduction to kd-trees. Department of Computer Science, University of Maryland, Technical report (2004)
3.
Zurück zum Zitat Chen, H., Guo, Y., Rostami, R., Fan, S., Tang, K., Yu, Z.: Porous structure design using parameterized hexahedral meshes and triply periodic minimal surfaces. In: Proceedings of Computer Graphics International 2018, CGI 2018, pp. 117–128. ACM, New York (2018) Chen, H., Guo, Y., Rostami, R., Fan, S., Tang, K., Yu, Z.: Porous structure design using parameterized hexahedral meshes and triply periodic minimal surfaces. In: Proceedings of Computer Graphics International 2018, CGI 2018, pp. 117–128. ACM, New York (2018)
4.
Zurück zum Zitat Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma, D.W., Seppala, J.V.: Preparation of poly(e-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia 7, 3850–3856 (2011)CrossRef Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma, D.W., Seppala, J.V.: Preparation of poly(e-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia 7, 3850–3856 (2011)CrossRef
5.
Zurück zum Zitat Feng, J., Fu, J., Shang, C., Lin, Z., Li, B.: Porous scaffold design by solid t-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 336, 333–352 (2018)MathSciNetCrossRef Feng, J., Fu, J., Shang, C., Lin, Z., Li, B.: Porous scaffold design by solid t-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 336, 333–352 (2018)MathSciNetCrossRef
6.
Zurück zum Zitat Gao, Z., Yu, Z., Holst, M.: Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation. Comput. Aided Geom. Des. 29(9), 707–721 (2012)MathSciNetCrossRef Gao, Z., Yu, Z., Holst, M.: Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation. Comput. Aided Geom. Des. 29(9), 707–721 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Giannitelli, S.M., Accoto, D., Trombetta, M., Rainer, A.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia 10, 580–594 (2014)CrossRef Giannitelli, S.M., Accoto, D., Trombetta, M., Rainer, A.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia 10, 580–594 (2014)CrossRef
8.
Zurück zum Zitat Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005)CrossRef Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005)CrossRef
9.
Zurück zum Zitat Khoda, A.K., Ozbolat, I.T., Koc, B.: Engineered tissue scaffolds with variational porous architecture. J. Biomech. Eng. 133, 011001 (2011)CrossRef Khoda, A.K., Ozbolat, I.T., Koc, B.: Engineered tissue scaffolds with variational porous architecture. J. Biomech. Eng. 133, 011001 (2011)CrossRef
10.
Zurück zum Zitat Kosec, G., Sarler, B.: Local RBF collocation method for Darcy flow. Comput. Model. Eng. Sci. 25, 197–208 (2008) Kosec, G., Sarler, B.: Local RBF collocation method for Darcy flow. Comput. Model. Eng. Sci. 25, 197–208 (2008)
11.
Zurück zum Zitat Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)CrossRef Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)CrossRef
12.
Zurück zum Zitat Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., Malda, J., Bartolo, P.J.S., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012)CrossRef Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., Malda, J., Bartolo, P.J.S., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012)CrossRef
13.
Zurück zum Zitat Melchels, F.P.W., Wiggenhauser, P.S., Warne, D., Barry, M., Ong, F.R., Chong, W.S., Hutmacher, D.W., Schantz, J.T.: CAD/CAM-assisted breast reconstruction. Biofabrication 3, 034114 (2011)CrossRef Melchels, F.P.W., Wiggenhauser, P.S., Warne, D., Barry, M., Ong, F.R., Chong, W.S., Hutmacher, D.W., Schantz, J.T.: CAD/CAM-assisted breast reconstruction. Biofabrication 3, 034114 (2011)CrossRef
14.
Zurück zum Zitat Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: In 12th International Meshing Roundtable, pp. 103–114 (2003) Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: In 12th International Meshing Roundtable, pp. 103–114 (2003)
15.
Zurück zum Zitat Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008)CrossRef Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008)CrossRef
16.
Zurück zum Zitat Schaefer, D.W., Keefer, K.D.: Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56, 2199–2202 (1986)CrossRef Schaefer, D.W., Keefer, K.D.: Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56, 2199–2202 (1986)CrossRef
17.
Zurück zum Zitat Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput.-Aided Des. 37, 339–353 (2005)CrossRef Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput.-Aided Des. 37, 339–353 (2005)CrossRef
18.
Zurück zum Zitat Shi, J., Yang, J., Zhu, L., Li, L., Li, Z., Wang, X.: A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces. IEEE Access 6, 1015–1022 (2018)CrossRef Shi, J., Yang, J., Zhu, L., Li, L., Li, Z., Wang, X.: A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces. IEEE Access 6, 1015–1022 (2018)CrossRef
19.
Zurück zum Zitat Sogutlu, S., Koc, B.: Stochatic modeling of tissue engineering scaffolds with varying porosity levels. Comput.-Aided Des. Appl. 4, 661–670 (2007)CrossRef Sogutlu, S., Koc, B.: Stochatic modeling of tissue engineering scaffolds with varying porosity levels. Comput.-Aided Des. Appl. 4, 661–670 (2007)CrossRef
20.
Zurück zum Zitat Sun, W., Starly, B., Nam, J., Darling, A.: Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput.-Aided Des. 37, 1097–1114 (2005)CrossRef Sun, W., Starly, B., Nam, J., Darling, A.: Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput.-Aided Des. 37, 1097–1114 (2005)CrossRef
21.
Zurück zum Zitat Vertnik, R., Sarler, B.: Solution of incompressible turbulent flow by a mesh-free method. Comput. Model. Eng. Sci. 44, 65–95 (2009)MathSciNetMATH Vertnik, R., Sarler, B.: Solution of incompressible turbulent flow by a mesh-free method. Comput. Model. Eng. Sci. 44, 65–95 (2009)MathSciNetMATH
22.
Zurück zum Zitat Wang, J., Liu, G.: On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Methods Appl. Mech. Eng. 191, 2611–2630 (2002)MathSciNetCrossRef Wang, J., Liu, G.: On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Methods Appl. Mech. Eng. 191, 2611–2630 (2002)MathSciNetCrossRef
23.
Zurück zum Zitat Wang, J., Yu, Z.: Feature-sensitive tetrahedral mesh generation with guaranteed quality. Comput.-Aided Des. 44(5), 400–412 (2012)CrossRef Wang, J., Yu, Z.: Feature-sensitive tetrahedral mesh generation with guaranteed quality. Comput.-Aided Des. 44(5), 400–412 (2012)CrossRef
24.
Zurück zum Zitat Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016)CrossRef Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016)CrossRef
25.
Zurück zum Zitat Yoo, D.J.: Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 12, 61–67 (2011)CrossRef Yoo, D.J.: Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 12, 61–67 (2011)CrossRef
26.
Zurück zum Zitat Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32, 7741–7754 (2011)CrossRef Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32, 7741–7754 (2011)CrossRef
27.
Zurück zum Zitat Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)CrossRef Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)CrossRef
Metadaten
Titel
Porous Structure Design in Tissue Engineering Using Anisotropic Radial Basis Functions
verfasst von
Ye Guo
Ke Liu
Zeyun Yu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-03801-4_8