Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Potential Application of Graphene-TPE Nanocomposite

verfasst von : Abhijit Bandyopadhyay, Poulomi Dasgupta, Sayan Basak

Erschienen in: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The journey of graphene remains quite interesting from the very beginning of its unexpected and accidental invention as 2D nanomaterial by Novoselov and Geim in the year of 2004 [1]. Several remarkably advantageous properties of graphene have unveiled a new era in nanotechnology in terms of their scientific and technological impact on the scientific community.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)
7.
Zurück zum Zitat University of Manchester (October 2013). University of Manchester (October 2013).
14.
Zurück zum Zitat X. Xu, et al., Sci. Rep 3, 2012, article number 1489. X. Xu, et al., Sci. Rep 3, 2012, article number 1489.
17.
Zurück zum Zitat Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., 1–12 (2012) Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., 1–12 (2012)
18.
Zurück zum Zitat Akpan, E.I, Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019) Akpan, E.I, Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019)
19.
Zurück zum Zitat Li, H., Yang, D., Zhang, T., Zhang, P., Wang, F., Qin, C., Yang, R., Chen, Z.D., Li, S.: J. Mater. Sci. 54, 11556–11563 (2019)CrossRef Li, H., Yang, D., Zhang, T., Zhang, P., Wang, F., Qin, C., Yang, R., Chen, Z.D., Li, S.: J. Mater. Sci. 54, 11556–11563 (2019)CrossRef
20.
Zurück zum Zitat Roach, D.J., Yuan, C., Kuang, X., Li, V.C.F., Blake, P., Romero, M.L., Hammel, I., Yu, K., Qi, H.J., Appl, A.C.S.: Mater. Interfaces 11, 19514–19521 (2019)CrossRef Roach, D.J., Yuan, C., Kuang, X., Li, V.C.F., Blake, P., Romero, M.L., Hammel, I., Yu, K., Qi, H.J., Appl, A.C.S.: Mater. Interfaces 11, 19514–19521 (2019)CrossRef
21.
Zurück zum Zitat Cai, G., Wang, J., Qian, K., Chen, J., Li, S., Lee, P.S.: Adv. Sci. 4, 1600190 (2017)CrossRef Cai, G., Wang, J., Qian, K., Chen, J., Li, S., Lee, P.S.: Adv. Sci. 4, 1600190 (2017)CrossRef
22.
Zurück zum Zitat Zhang, M., Wang, C., Wang, H., Jian, M., Hao, X., Zhang, Y.: Adv. Funct. Mater. 27, 1604795 (2017)CrossRef Zhang, M., Wang, C., Wang, H., Jian, M., Hao, X., Zhang, Y.: Adv. Funct. Mater. 27, 1604795 (2017)CrossRef
23.
Zurück zum Zitat Zheng, Y., Li, Y., Dai, K., Wang, Y., Zheng, G., Liu, C., Shen, C.: Compos. Sci. Technol. 156, 276–286 (2018)CrossRef Zheng, Y., Li, Y., Dai, K., Wang, Y., Zheng, G., Liu, C., Shen, C.: Compos. Sci. Technol. 156, 276–286 (2018)CrossRef
24.
Zurück zum Zitat Sun, J., Zhao, Y., Yang, Z., Shen, J., Cabrera, E., Lertola, M.J., Yang, W., Zhang, D., Benatar, A., Castro, J.M.: Nanotechnology 29, 355304 (2018)CrossRef Sun, J., Zhao, Y., Yang, Z., Shen, J., Cabrera, E., Lertola, M.J., Yang, W., Zhang, D., Benatar, A., Castro, J.M.: Nanotechnology 29, 355304 (2018)CrossRef
25.
Zurück zum Zitat Wang, L., Luo, J., Chen, Y., Lin, L., Huang, X., Xue, H., Gao, J., Appl, A.C.S.: Mater. Interfaces 11, 17774–17783 (2019)CrossRef Wang, L., Luo, J., Chen, Y., Lin, L., Huang, X., Xue, H., Gao, J., Appl, A.C.S.: Mater. Interfaces 11, 17774–17783 (2019)CrossRef
26.
Zurück zum Zitat Niu, D., Jiang, W., Liu, H., Zhao, T., Lei, B., Li, Y., Yin, L., Shi, Y., Chen, B., Bingheng, Lu.: Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites. Sci. Rep. 6, 27366 (2016)CrossRef Niu, D., Jiang, W., Liu, H., Zhao, T., Lei, B., Li, Y., Yin, L., Shi, Y., Chen, B., Bingheng, Lu.: Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites. Sci. Rep. 6, 27366 (2016)CrossRef
27.
Zurück zum Zitat Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, N.: Electrically conductive thermoplastic Elastomer nanocomposites at ultralow Graphene Loading levels for strain sensor applications. J. Mater. Chem. C (2015) Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, N.: Electrically conductive thermoplastic Elastomer nanocomposites at ultralow Graphene Loading levels for strain sensor applications. J. Mater. Chem. C (2015)
28.
Zurück zum Zitat Li, X., Deng, H., Li, Z., Xiu, H., Qi, X., Zhang, Q., Wang, K., Chen, F., Fu, Q.: Graphene/thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos. A 68, 264–275 (2015)CrossRef Li, X., Deng, H., Li, Z., Xiu, H., Qi, X., Zhang, Q., Wang, K., Chen, F., Fu, Q.: Graphene/thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos. A 68, 264–275 (2015)CrossRef
29.
Zurück zum Zitat Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G.G., Lavorgna, M., Xia, H., Silvestre, C., Ambrosio, L.: Selective laser sintering fabricated thermoplastic polyurethane/graphene cellular structures with tailorable properties and high strain sensitivity. Appl. Sci. 9, 864 (2019)CrossRef Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G.G., Lavorgna, M., Xia, H., Silvestre, C., Ambrosio, L.: Selective laser sintering fabricated thermoplastic polyurethane/graphene cellular structures with tailorable properties and high strain sensitivity. Appl. Sci. 9, 864 (2019)CrossRef
30.
Zurück zum Zitat Liu, Hu., Huang, W., Yang, X., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guob, J., Guo, Z.: Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene Nanocomposites. Journal of Materials Chemistry C 4, 4459–4469 (2016)CrossRef Liu, Hu., Huang, W., Yang, X., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guob, J., Guo, Z.: Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene Nanocomposites. Journal of Materials Chemistry C 4, 4459–4469 (2016)CrossRef
31.
Zurück zum Zitat Costa, P., Gonçalves, S.A.P., Mora, H., Carabineiro, S.A.C., Viana, J.C., Lanceros-Mendez, S.: Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications. ACS Appl. Mater. Interfaces (2019) Costa, P., Gonçalves, S.A.P., Mora, H., Carabineiro, S.A.C., Viana, J.C., Lanceros-Mendez, S.: Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications. ACS Appl. Mater. Interfaces (2019)
32.
Zurück zum Zitat Pan, S., Pei, Z., Jing, Z., Song, J., Zhang, W., Zhang, Q., Sang, S.: A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Adv. 10, 11225–11232 (2020)CrossRef Pan, S., Pei, Z., Jing, Z., Song, J., Zhang, W., Zhang, Q., Sang, S.: A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Adv. 10, 11225–11232 (2020)CrossRef
33.
Zurück zum Zitat Liang, J., Yanfei, Xu., Huang, Yi., Zhang, L., Wang, Y., Ma, Y., Li, F., Guo, T., Chen, Y.: Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113, 9921–9927 (2009)CrossRef Liang, J., Yanfei, Xu., Huang, Yi., Zhang, L., Wang, Y., Ma, Y., Li, F., Guo, T., Chen, Y.: Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113, 9921–9927 (2009)CrossRef
34.
Zurück zum Zitat Schäfer, C.G., et al.: Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem. Mater. 25, 2309–2318 (2013) Schäfer, C.G., et al.: Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem. Mater. 25, 2309–2318 (2013)
35.
Zurück zum Zitat Tang, R., et al.: Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl. Mater. Interfaces 7, 8393–8397 (2015)CrossRef Tang, R., et al.: Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl. Mater. Interfaces 7, 8393–8397 (2015)CrossRef
36.
Zurück zum Zitat Deng, J., et al.: Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc 138, 225–230 (2016)CrossRef Deng, J., et al.: Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc 138, 225–230 (2016)CrossRef
37.
Zurück zum Zitat Shumei Tang, YuXu., Gehong, Su., Bao, J., Zhang, A.: Photoelectric and flexible poly(styrene-b-ethylene/butylene-b-styrene)-zinc porphyrin–graphene hybrid composite: synthesis, performance, and mechanism. RSC Adv. 8, 35429–35436 (2018)CrossRef Shumei Tang, YuXu., Gehong, Su., Bao, J., Zhang, A.: Photoelectric and flexible poly(styrene-b-ethylene/butylene-b-styrene)-zinc porphyrin–graphene hybrid composite: synthesis, performance, and mechanism. RSC Adv. 8, 35429–35436 (2018)CrossRef
38.
Zurück zum Zitat Zhang, C., Yuan, Z., Zhang, S., Wang, Y., Liu, Z.: Angew. Chem., Int. Ed. 50, 6851–6854 (2011) Zhang, C., Yuan, Z., Zhang, S., Wang, Y., Liu, Z.: Angew. Chem., Int. Ed. 50, 6851–6854 (2011)
40.
Zurück zum Zitat He, S.J., Song, B., Li, D., Zhu, C.F., Qi, W.P., Wen, Y.Q., Wang, L.H., Song, S.P., Fang, H.P., Fan, C.H.: Adv. Funct. Mater. 20, 453–459 (2010)CrossRef He, S.J., Song, B., Li, D., Zhu, C.F., Qi, W.P., Wen, Y.Q., Wang, L.H., Song, S.P., Fang, H.P., Fan, C.H.: Adv. Funct. Mater. 20, 453–459 (2010)CrossRef
41.
Zurück zum Zitat Song, Y., Duan, H., Zhu, S., Lü, J., Lü, C.: Preparation of temperature-responsive block copolymer anchored graphene oxide@ZnSNPs luminescent nanocomposite for selective detection of 2,4,6-trinitrotoluene. J. Mater. Chem. C (2016) Song, Y., Duan, H., Zhu, S., Lü, J., Lü, C.: Preparation of temperature-responsive block copolymer anchored graphene oxide@ZnSNPs luminescent nanocomposite for selective detection of 2,4,6-trinitrotoluene. J. Mater. Chem. C (2016)
42.
Zurück zum Zitat Yang, H., Paek, K., Kim, B.J.: Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 5, 5720–5724 (2013)CrossRef Yang, H., Paek, K., Kim, B.J.: Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 5, 5720–5724 (2013)CrossRef
43.
Zurück zum Zitat Nguyen, V.H., Kim, J., Tabassian, R., Kotal, M., Jun, K., Oh, J.-H., Son, J.-M., Manzoor, M.T., Kim, K.J., Oh, I.K.: Electroactive artificial muscles based on functionally antagonistic core–shell polymer electrolyte derived from PS-b-PSS block copolymer. Adv. Sci. 6, 1801196 (2019) Nguyen, V.H., Kim, J., Tabassian, R., Kotal, M., Jun, K., Oh, J.-H., Son, J.-M., Manzoor, M.T., Kim, K.J., Oh, I.K.: Electroactive artificial muscles based on functionally antagonistic core–shell polymer electrolyte derived from PS-b-PSS block copolymer. Adv. Sci. 6, 1801196 (2019)
44.
Zurück zum Zitat Leea, J.-W., Kwona, T., Kang, Y., Hanc, T.H., Choc, C.G., Honga, S.M., Hwangd, S.W., Koo, C.M.: Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos. Sci. Technol. 163, 63–70 (2018) Leea, J.-W., Kwona, T., Kang, Y., Hanc, T.H., Choc, C.G., Honga, S.M., Hwangd, S.W., Koo, C.M.: Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos. Sci. Technol. 163, 63–70 (2018)
45.
Zurück zum Zitat Ponnamma, D., Sadasivuni, K.K., Strankowski, M., Moldenaers, P., Thomas, S., Grohens, Y.: Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 3, 16068–16079 (2013) Ponnamma, D., Sadasivuni, K.K., Strankowski, M., Moldenaers, P., Thomas, S., Grohens, Y.: Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 3, 16068–16079 (2013)
46.
Zurück zum Zitat Kashif, M., Chang, Y.W.: Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur. Polymer J. 66, 273–281 (2015)CrossRef Kashif, M., Chang, Y.W.: Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur. Polymer J. 66, 273–281 (2015)CrossRef
47.
Zurück zum Zitat Appel, A.K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53, 4931–4939 (2012) Appel, A.K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53, 4931–4939 (2012)
48.
Zurück zum Zitat Thakur, S., Karak, N.: Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv. 3, 9476–9482 (2013)CrossRef Thakur, S., Karak, N.: Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv. 3, 9476–9482 (2013)CrossRef
49.
Zurück zum Zitat Han, S., Chun, B.C.: Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos. A Appl. Sci. Manufact. 8, 65–72 (2014)CrossRef Han, S., Chun, B.C.: Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos. A Appl. Sci. Manufact. 8, 65–72 (2014)CrossRef
50.
Zurück zum Zitat Patel, K.K., Purohit, R.: Improved shape memory and mechanical properties ofmicrowave-induced thermoplastic polyurethane/graphenenanoplatelets composites. Sens. Actuat. A 285, 17–24 (2019) Patel, K.K., Purohit, R.: Improved shape memory and mechanical properties ofmicrowave-induced thermoplastic polyurethane/graphenenanoplatelets composites. Sens. Actuat. A 285, 17–24 (2019)
51.
Zurück zum Zitat Li, Y., Lian, H., Yanou, Hu., Chang, W., Cui, X., Liu, Y.: Enhancement in mechanical and shape memory properties for liquid crystalline polyurethane strengthened by graphene oxide. Polymers 8, 236 (2016)CrossRef Li, Y., Lian, H., Yanou, Hu., Chang, W., Cui, X., Liu, Y.: Enhancement in mechanical and shape memory properties for liquid crystalline polyurethane strengthened by graphene oxide. Polymers 8, 236 (2016)CrossRef
52.
Zurück zum Zitat Yoo, H.J., Mahapatra, S.S., Cho, J.W.: High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Phys. Chem. C 118, 10408−10415 (2014) Yoo, H.J., Mahapatra, S.S., Cho, J.W.: High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Phys. Chem. C 118, 10408−10415 (2014)
53.
Zurück zum Zitat Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: Mechanically robust and shape-memory hybrid aerogels for super-insulating applications. J. Mater. Chem. A (2017) Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: Mechanically robust and shape-memory hybrid aerogels for super-insulating applications. J. Mater. Chem. A (2017)
54.
Zurück zum Zitat Rana, S., Cho, J.W., Tan, L.P.: Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv. (2013) Rana, S., Cho, J.W., Tan, L.P.: Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv. (2013)
55.
Zurück zum Zitat Valentini, L., Cardinali, M., Kenny, J.: Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. J. Polym. Sci., Part B: Polym. Phys. 52, 1100–1106 (2014) Valentini, L., Cardinali, M., Kenny, J.: Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. J. Polym. Sci., Part B: Polym. Phys. 52, 1100–1106 (2014)
56.
Zurück zum Zitat Tan, L., Gan, L., Hu, J., Zhu, H., Han, J.: Functional shape memory composite nanofibers with graphene oxide filler. Composites: Part A 76, 115–123 (2015) Tan, L., Gan, L., Hu, J., Zhu, H., Han, J.: Functional shape memory composite nanofibers with graphene oxide filler. Composites: Part A 76, 115–123 (2015)
57.
Zurück zum Zitat Yang, Y., Ding, X., Urban, M.W.: Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49–50, 34–59 (2015)CrossRef Yang, Y., Ding, X., Urban, M.W.: Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49–50, 34–59 (2015)CrossRef
58.
Zurück zum Zitat Huang, Lu., Yi, N., Yingpeng, Wu., Zhang, Yi., Zhang, Q., Huang, Yi., Ma, Y., Chen, Y.: Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013)CrossRef Huang, Lu., Yi, N., Yingpeng, Wu., Zhang, Yi., Zhang, Q., Huang, Yi., Ma, Y., Chen, Y.: Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013)CrossRef
59.
Zurück zum Zitat Lia, J., Zhang, G., Denga, L., Zhaoa, S., Gaoa, Y., Jianga, K., Sun, R., Wong, C.: In situ polymerization and mechanical reinforced, thermal healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A (2014) Lia, J., Zhang, G., Denga, L., Zhaoa, S., Gaoa, Y., Jianga, K., Sun, R., Wong, C.: In situ polymerization and mechanical reinforced, thermal healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A (2014)
60.
Zurück zum Zitat Wang, Ke., Zhou, Z., Zhang, J., Tang, J., Peiyu, Wu., Wang, Y., Zhao, Y., Leng, Y.: Electrical and thermal and self-healing properties of graphene-thermopolyurethane flexible conductive films. Nanomaterials 10, 753 (2020)CrossRef Wang, Ke., Zhou, Z., Zhang, J., Tang, J., Peiyu, Wu., Wang, Y., Zhao, Y., Leng, Y.: Electrical and thermal and self-healing properties of graphene-thermopolyurethane flexible conductive films. Nanomaterials 10, 753 (2020)CrossRef
61.
Zurück zum Zitat Thakur, S., Karak, N.: Tuning of sunlight-induced self-cleaning and selfhealing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2– reduced graphene oxide nanohybrid. J. Mater. Chem. A 3, 12334–12342 (2015)CrossRef Thakur, S., Karak, N.: Tuning of sunlight-induced self-cleaning and selfhealing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2– reduced graphene oxide nanohybrid. J. Mater. Chem. A 3, 12334–12342 (2015)CrossRef
62.
Zurück zum Zitat Bayan, R., Karak, N.: Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: towards creating high performance smart materials. Compos. A 110, 142–153 (2018)CrossRef Bayan, R., Karak, N.: Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: towards creating high performance smart materials. Compos. A 110, 142–153 (2018)CrossRef
63.
Zurück zum Zitat Chung, C., Kim, Y.-k., Shin, D., Ryoo, S.-r., Hong, B.H., Min, D.-h.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013) Chung, C., Kim, Y.-k., Shin, D., Ryoo, S.-r., Hong, B.H., Min, D.-h.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013)
64.
Zurück zum Zitat She, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012) She, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012)
65.
Zurück zum Zitat Shi, J., Fang, Y.: Biomedical applications of graphene. In: Zhu, H., Xu, Z., Xie, D., Fang, Y. (Eds.), Graphene: fabrication, characterizations, properties and applications, pp. 215–232. Academic Press, London (2018) Shi, J., Fang, Y.: Biomedical applications of graphene. In: Zhu, H., Xu, Z., Xie, D., Fang, Y. (Eds.), Graphene: fabrication, characterizations, properties and applications, pp. 215–232. Academic Press, London (2018)
66.
Zurück zum Zitat Jiana, Z., Wangb, He., Liub, M., Chena, S., Wanga, Z., Qianb, W., Luob, G., Xia, H.: Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng., C 111, 110833–110843 (2020)CrossRef Jiana, Z., Wangb, He., Liub, M., Chena, S., Wanga, Z., Qianb, W., Luob, G., Xia, H.: Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng., C 111, 110833–110843 (2020)CrossRef
67.
Zurück zum Zitat Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res 46, 2211–2224 (2013)CrossRef Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res 46, 2211–2224 (2013)CrossRef
68.
Zurück zum Zitat Garcia-Alegria, E., Iluit, M., Stefanska, M., Silva, C., Heeg, S., Kimber, S.J., Kouskoff, V., Lacaud, G., Vijayaraghavan, A., Batta, K.: Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci. Rep. 6, 25917 (2016)CrossRef Garcia-Alegria, E., Iluit, M., Stefanska, M., Silva, C., Heeg, S., Kimber, S.J., Kouskoff, V., Lacaud, G., Vijayaraghavan, A., Batta, K.: Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci. Rep. 6, 25917 (2016)CrossRef
69.
Zurück zum Zitat Ruiz, O.N., Fernando, K.S., Wang, B., Brown, N.A., Luo, P.G., McNamara, N.D., Vangsness, M., Sun, Y.P., Bunker, C.E.: Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5, 8100–8107 (2011)CrossRef Ruiz, O.N., Fernando, K.S., Wang, B., Brown, N.A., Luo, P.G., McNamara, N.D., Vangsness, M., Sun, Y.P., Bunker, C.E.: Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5, 8100–8107 (2011)CrossRef
70.
Zurück zum Zitat Yang, X.Z., Wang, Y.C., Tang, L.Y., Xia, H.A.I., Wang, J.U.N.: Synthesis and eharacterization of amphiphilic block copolymer of polyphosphoester and poly (L-lactic acid). J. Polym. Sci., Part A: Polym. Chem. 46, 6425−6434 (2008) Yang, X.Z., Wang, Y.C., Tang, L.Y., Xia, H.A.I., Wang, J.U.N.: Synthesis and eharacterization of amphiphilic block copolymer of polyphosphoester and poly (L-lactic acid). J. Polym. Sci., Part A: Polym. Chem. 46, 6425−6434 (2008)
71.
Zurück zum Zitat Chen, Q., Mangadlao, J.D., Wallat, J., De Leon, A., Pokorski, J.K., Advincula, R.C.: 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 4015−4023 (2017) Chen, Q., Mangadlao, J.D., Wallat, J., De Leon, A., Pokorski, J.K., Advincula, R.C.: 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 4015−4023 (2017)
72.
Zurück zum Zitat Jing, X., Mi, H.-Y., Salick, M.R., Peng, X.-F., Turng, L.-S.: Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym. Compos., 1408–1417 (2014) Jing, X., Mi, H.-Y., Salick, M.R., Peng, X.-F., Turng, L.-S.: Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym. Compos., 1408–1417 (2014)
73.
Zurück zum Zitat Thampi, S., Muthuvijayan, V., Parameswaran, R.: Mechanical characterization of high-performance graphene oxide incorporated aligned fibroporous poly(carbonate urethane) membrane for potential biomedical applications. J. Appl. Polym. Sci., 41809 (2015) Thampi, S., Muthuvijayan, V., Parameswaran, R.: Mechanical characterization of high-performance graphene oxide incorporated aligned fibroporous poly(carbonate urethane) membrane for potential biomedical applications. J. Appl. Polym. Sci., 41809 (2015)
74.
Zurück zum Zitat Shams, E.,Yeganeh, H., Naderi-Manesh, H., Gharibi, R., Hassan, Z.M.: Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. J. Mater. Sci.: Mater. Med. 28, 75 (2017) Shams, E.,Yeganeh, H., Naderi-Manesh, H., Gharibi, R., Hassan, Z.M.: Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. J. Mater. Sci.: Mater. Med. 28, 75 (2017)
75.
Zurück zum Zitat Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, 58 (2015) Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, 58 (2015)
76.
Zurück zum Zitat Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014) Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)
Metadaten
Titel
Potential Application of Graphene-TPE Nanocomposite
verfasst von
Abhijit Bandyopadhyay
Poulomi Dasgupta
Sayan Basak
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9085-6_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.