Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Predicted Carbon Forms

verfasst von : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Erschienen in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As it has been shown above, a grand variety of carbon allotropes and forms is currently known. They can be very common (graphite, coal) or rare (nanoplates or nanocups) and can be well-developed industrially (carbon black) or intensively studied on nano-level (carbon nanotubes or graphene), doped with metals and functionalized with organic and organometallic moieties. At the same time, applying modern computational methods, a host of new carbon nanoforms (e.g., novamene [1] or protomene [2]) are possible, which have not yet been observed experimentally. An efficient and reliable methodology for crystal structure prediction was developed [3], merging ab initio total energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. While in many cases it is possible to solve crystal structure from experimental data, theoretical structure prediction is crucially important for several reasons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This term does not deal with carbon nanotubes containing metals as impurities.
 
2
Reproduced with permission of the PNAS (Proc. Natl. Acad. Sci. USA. 2013, 110(47), 18809–18813).
 
3
Reproduced with permission of the American Chemical Society (J. Phys. Chem. C, 2012, 116(45), 24233–24238).
 
4
Reproduced with permission of the American Physical Society (Phys. Rev. B, 2010, 82, 134126).
 
5
Reproduced with permission of Springer (Journal of Experimental and Theoretical Physics Letters, 1998, 68(9), 726–731).
 
6
Reproduced with permission of PNAS (PNAS, 2015, 112(8), 2372–2377).
 
7
Reproduced with permission of Nature (Scientific Reports, 2013, 3, Article number: 1877).
 
8
Image reproduced with permission of the MDPI (Materials, 2016, 9, 484, 15 pp.).
 
Literatur
1.
Zurück zum Zitat L.A. Burchfield, M. AlFahim, R.S. Wittman, F. Delodovicic, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3(2), e00242 (2017)CrossRef L.A. Burchfield, M. AlFahim, R.S. Wittman, F. Delodovicic, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3(2), e00242 (2017)CrossRef
2.
Zurück zum Zitat F. Delodovicic, N. Manini, R.S. Wittman, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018)CrossRef F. Delodovicic, N. Manini, R.S. Wittman, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018)CrossRef
3.
Zurück zum Zitat A.R. Oganov, C.W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006)CrossRef A.R. Oganov, C.W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006)CrossRef
4.
Zurück zum Zitat Q. Li, Y.M. Ma, A.R. Oganov, H.B. Wang, H. Wang, Y. Xu, T. Cui, H.K. Mao, G.T. Zou, Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)CrossRef Q. Li, Y.M. Ma, A.R. Oganov, H.B. Wang, H. Wang, Y. Xu, T. Cui, H.K. Mao, G.T. Zou, Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)CrossRef
5.
Zurück zum Zitat F. Tian, X. Dong, Z.S. Zhao, J.L. He, H.T. Wang, Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. J. Phys. Condens. Matter 24, 165504 (2012)CrossRef F. Tian, X. Dong, Z.S. Zhao, J.L. He, H.T. Wang, Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. J. Phys. Condens. Matter 24, 165504 (2012)CrossRef
6.
Zurück zum Zitat J.T. Wang, C. Chen, Y. Kawazoe, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 106, 075501 (2011)CrossRef J.T. Wang, C. Chen, Y. Kawazoe, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 106, 075501 (2011)CrossRef
7.
Zurück zum Zitat Z.P. Li, F.M. Gao, Z.M. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: first-principles calculations. Phys. Rev. B 85, 144115 (2012)CrossRef Z.P. Li, F.M. Gao, Z.M. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: first-principles calculations. Phys. Rev. B 85, 144115 (2012)CrossRef
8.
Zurück zum Zitat C.Y. He, L.Z. Sun, C.X. Zhang, X.Y. Peng, K.W. Zhang, J.X. Zhong, New superhard carbon phases between graphite and diamond. Solid State Commun. 152, 1560–1563 (2012)CrossRef C.Y. He, L.Z. Sun, C.X. Zhang, X.Y. Peng, K.W. Zhang, J.X. Zhong, New superhard carbon phases between graphite and diamond. Solid State Commun. 152, 1560–1563 (2012)CrossRef
9.
Zurück zum Zitat Q. Wei, M.G. Zhang, H.Y. Yan, Z.Z. Lin, X.M. Zhu, Structural, electronic and mechanical properties of Imma-carbon. EPL 107, 27007 (2014)CrossRef Q. Wei, M.G. Zhang, H.Y. Yan, Z.Z. Lin, X.M. Zhu, Structural, electronic and mechanical properties of Imma-carbon. EPL 107, 27007 (2014)CrossRef
10.
Zurück zum Zitat C.Y. He, J.X. Zhong, M585, a low energy superhard monoclinic carbon phase. Solid State Commun. 181, 24–27 (2014)CrossRef C.Y. He, J.X. Zhong, M585, a low energy superhard monoclinic carbon phase. Solid State Commun. 181, 24–27 (2014)CrossRef
11.
Zurück zum Zitat Z.S. Zhao, F. Tian, X. Dong, Q. Li, Q.Q. Wang, H. Wang, X. Zhong, B. Xu, D.L. Yu, J.L. He, et al., Tetragonal allotrope of group 14 elements. J. Am. Chem. Soc. 134, 12362–12365 (2012)CrossRef Z.S. Zhao, F. Tian, X. Dong, Q. Li, Q.Q. Wang, H. Wang, X. Zhong, B. Xu, D.L. Yu, J.L. He, et al., Tetragonal allotrope of group 14 elements. J. Am. Chem. Soc. 134, 12362–12365 (2012)CrossRef
12.
Zurück zum Zitat M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, C2/m-carbon: structural, mechanical, and electronic properties. J. Mater. Sci. 50, 7104–7114 (2015)CrossRef M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, C2/m-carbon: structural, mechanical, and electronic properties. J. Mater. Sci. 50, 7104–7114 (2015)CrossRef
13.
Zurück zum Zitat M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Structural, elastic, and electronic properties of a new phase of carbon. Commun. Theor. Phys. 64, 237–243 (2015)CrossRef M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Structural, elastic, and electronic properties of a new phase of carbon. Commun. Theor. Phys. 64, 237–243 (2015)CrossRef
14.
Zurück zum Zitat Z.S. Zhao, B. Xu, X.F. Zhou, L.M. Wang, B. Wen, J.L. He, Z.Y. Liu, H.T. Wang, Y.J. Tian, Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. 107, 215502 (2011)CrossRef Z.S. Zhao, B. Xu, X.F. Zhou, L.M. Wang, B. Wen, J.L. He, Z.Y. Liu, H.T. Wang, Y.J. Tian, Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. 107, 215502 (2011)CrossRef
15.
Zurück zum Zitat X.X. Zhang, Y.C. Wang, J. Lv, C.Y. Zhu, Q. Li, M. Zhang, Q. Li, Y.M. Ma, First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013)CrossRef X.X. Zhang, Y.C. Wang, J. Lv, C.Y. Zhu, Q. Li, M. Zhang, Q. Li, Y.M. Ma, First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013)CrossRef
16.
Zurück zum Zitat J.-J. Zheng, X. Zhao, Y. Zhao, X. Gao, Two-dimensional carbon compounds derived from graphyne with chemical properties superior to those of graphene. Sci. Reports 3, 1271 (2013)CrossRef J.-J. Zheng, X. Zhao, Y. Zhao, X. Gao, Two-dimensional carbon compounds derived from graphyne with chemical properties superior to those of graphene. Sci. Reports 3, 1271 (2013)CrossRef
17.
Zurück zum Zitat Z. Li, M. Smeu, A. Rives, et al., Towards graphyne molecular electronics. Nat. Commun. 6, 6321 (2014)CrossRef Z. Li, M. Smeu, A. Rives, et al., Towards graphyne molecular electronics. Nat. Commun. 6, 6321 (2014)CrossRef
18.
Zurück zum Zitat T. Belenkova, V. Chernov, V. Mavrinskii, Structures and electronic properties of graphyne layers. Mater. Sci. Forum 845, 239–242 (2016)CrossRef T. Belenkova, V. Chernov, V. Mavrinskii, Structures and electronic properties of graphyne layers. Mater. Sci. Forum 845, 239–242 (2016)CrossRef
19.
Zurück zum Zitat R. Majidi, Electronic properties of porous graphene, α-graphyne, graphene-like, and graphyne-like BN sheets. Can. J. Phys. 94(3), 305–309 (2016)CrossRef R. Majidi, Electronic properties of porous graphene, α-graphyne, graphene-like, and graphyne-like BN sheets. Can. J. Phys. 94(3), 305–309 (2016)CrossRef
20.
Zurück zum Zitat H. Lu, S.-D. Li, Two-dimensional carbon allotropes from graphene to graphyne. J. Mater. Chem. C 1, 3677–3680 (2013)CrossRef H. Lu, S.-D. Li, Two-dimensional carbon allotropes from graphene to graphyne. J. Mater. Chem. C 1, 3677–3680 (2013)CrossRef
21.
Zurück zum Zitat Z. Li, Z. Liu, Z. Liu, Movement of Dirac points and band gaps in graphyne under rotating strain. Nano Res. 10(6), 2005–2020 (2017)CrossRef Z. Li, Z. Liu, Z. Liu, Movement of Dirac points and band gaps in graphyne under rotating strain. Nano Res. 10(6), 2005–2020 (2017)CrossRef
22.
Zurück zum Zitat W.-J. Yin, Y.-E. Xie, L.-M. Liu, et al., R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. J. Mater. Chem. A 1, 5341–5346 (2013)CrossRef W.-J. Yin, Y.-E. Xie, L.-M. Liu, et al., R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. J. Mater. Chem. A 1, 5341–5346 (2013)CrossRef
23.
Zurück zum Zitat D. Solis, C.F. Woellner, D.D. Borges, D.S. Galvao, Mechanical and thermal stability of graphyne and graphdiyne nanoscrolls. arXiv:1701.05790, 2017. 0.1557/adv.2017.130 D. Solis, C.F. Woellner, D.D. Borges, D.S. Galvao, Mechanical and thermal stability of graphyne and graphdiyne nanoscrolls. arXiv:1701.05790, 2017. 0.1557/adv.2017.130
24.
Zurück zum Zitat W. Wu, W. Guo, X. Cheng Zeng, Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale 5, 9264–9276 (2013)CrossRef W. Wu, W. Guo, X. Cheng Zeng, Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale 5, 9264–9276 (2013)CrossRef
25.
Zurück zum Zitat L.D. Pan, L.Z. Zhang, B.Q. Song, S.X. Du, H.-J. Gao, Graphyne- and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011)CrossRef L.D. Pan, L.Z. Zhang, B.Q. Song, S.X. Du, H.-J. Gao, Graphyne- and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011)CrossRef
26.
Zurück zum Zitat S.W. Cranford, M.J. Buehler, Mechanical properties of graphyne. Carbon 49, 4111–4121 (2011)CrossRef S.W. Cranford, M.J. Buehler, Mechanical properties of graphyne. Carbon 49, 4111–4121 (2011)CrossRef
27.
Zurück zum Zitat A. Ahmadi, M. Faghihnasiri, H. Ghorbani Shiraz, M. Sabeti, Mechanical properties of graphyne and its analogous decorated with Na and Pt. Superlattice. Microst. 101, 602–608 (2017)CrossRef A. Ahmadi, M. Faghihnasiri, H. Ghorbani Shiraz, M. Sabeti, Mechanical properties of graphyne and its analogous decorated with Na and Pt. Superlattice. Microst. 101, 602–608 (2017)CrossRef
28.
Zurück zum Zitat R. Couto, N. Silvestre, Finite element modelling and mechanical characterization of graphyne. J. Nanomater. 2016., Article ID 7487049, 15 (2016)CrossRef R. Couto, N. Silvestre, Finite element modelling and mechanical characterization of graphyne. J. Nanomater. 2016., Article ID 7487049, 15 (2016)CrossRef
29.
Zurück zum Zitat J. Hou, Z. Yin, Y. Zhang, T. Chang, An analytical molecular mechanics model for elastic properties of graphyne-n. J. Appl. Mech. 82(9.), 5 pp), 094501 (2015)CrossRef J. Hou, Z. Yin, Y. Zhang, T. Chang, An analytical molecular mechanics model for elastic properties of graphyne-n. J. Appl. Mech. 82(9.), 5 pp), 094501 (2015)CrossRef
30.
Zurück zum Zitat T. Ouyang, M. Hu, Thermal transport and thermoelectric properties of beta-graphyne nanostructures. Nanotechnology 25(24), 245401 (2014)CrossRef T. Ouyang, M. Hu, Thermal transport and thermoelectric properties of beta-graphyne nanostructures. Nanotechnology 25(24), 245401 (2014)CrossRef
31.
Zurück zum Zitat N. Han, H. Liu, S. Zhou, J. Zhao, Possible formation of graphyne on transition metal surfaces: a competition with graphene from the chemical potential point of view. J. Phys. Chem. C 120, 14699–14705 (2016)CrossRef N. Han, H. Liu, S. Zhou, J. Zhao, Possible formation of graphyne on transition metal surfaces: a competition with graphene from the chemical potential point of view. J. Phys. Chem. C 120, 14699–14705 (2016)CrossRef
32.
Zurück zum Zitat Q. Yuan, F. Ding, Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 6, 12727–12731 (2014)CrossRef Q. Yuan, F. Ding, Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 6, 12727–12731 (2014)CrossRef
33.
Zurück zum Zitat A. Saraiva-Souza, M. Smeu, L. Zhang, M.A. Ratner, H. Guo, Two-dimensional γ-Graphyne suspended on Si(111): a hybrid device. J. Phys. Chem. C 120(8), 4605–4611 (2016)CrossRef A. Saraiva-Souza, M. Smeu, L. Zhang, M.A. Ratner, H. Guo, Two-dimensional γ-Graphyne suspended on Si(111): a hybrid device. J. Phys. Chem. C 120(8), 4605–4611 (2016)CrossRef
34.
Zurück zum Zitat B. Bhattacharya, U. Sarkar, Graphyne–graphene (nitride) heterostructure as nanocapacitor. Chem. Phys. 478, 73–80 (2016)CrossRef B. Bhattacharya, U. Sarkar, Graphyne–graphene (nitride) heterostructure as nanocapacitor. Chem. Phys. 478, 73–80 (2016)CrossRef
35.
Zurück zum Zitat S. Kim, J.Y. Lee, Doping and vacancy effects of graphyne on SO2 adsorption. J. Colloid Interface Sci. 493, 123–129 (2017)CrossRef S. Kim, J.Y. Lee, Doping and vacancy effects of graphyne on SO2 adsorption. J. Colloid Interface Sci. 493, 123–129 (2017)CrossRef
36.
Zurück zum Zitat R. Majidi, A.R. Karami, Adsorption of formaldehyde on graphene and graphyne. Phys. E. 59, 169–173 (2014)CrossRef R. Majidi, A.R. Karami, Adsorption of formaldehyde on graphene and graphyne. Phys. E. 59, 169–173 (2014)CrossRef
37.
Zurück zum Zitat D. Cortes-Arriagada, Adsorption of polycyclic aromatic hydrocarbons onto graphyne: comparisons with graphene. Int. J. Quantum Chem. 117, e25346 (2017)CrossRef D. Cortes-Arriagada, Adsorption of polycyclic aromatic hydrocarbons onto graphyne: comparisons with graphene. Int. J. Quantum Chem. 117, e25346 (2017)CrossRef
38.
Zurück zum Zitat D. Zhang, J. Yang, E.H. Hasdeo, et al., Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B 93, 245428 (2016)CrossRef D. Zhang, J. Yang, E.H. Hasdeo, et al., Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B 93, 245428 (2016)CrossRef
39.
Zurück zum Zitat T. Isoniemi, A. Johansson, J.J. Toppari, H. Kunttu, Collective optical resonances in networks of metallic carbon nanotubes. Carbon 63, 581–585 (2013)CrossRef T. Isoniemi, A. Johansson, J.J. Toppari, H. Kunttu, Collective optical resonances in networks of metallic carbon nanotubes. Carbon 63, 581–585 (2013)CrossRef
40.
Zurück zum Zitat L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88(21), 217206 (2002). 4 ppCrossRef L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88(21), 217206 (2002). 4 ppCrossRef
41.
Zurück zum Zitat H. Bu, M. Zhao, W. Dong, S. Lu, X. Wang, A metallic carbon allotrope with superhardness: a first-principles prediction. J. Mater. Chem. C 2, 2751–2757 (2014)CrossRef H. Bu, M. Zhao, W. Dong, S. Lu, X. Wang, A metallic carbon allotrope with superhardness: a first-principles prediction. J. Mater. Chem. C 2, 2751–2757 (2014)CrossRef
42.
Zurück zum Zitat Y. Cheng, R. Melnik, Y. Kawazoe, B. Wen, Three dimensional metallic carbon from distorting sp3-bond. Cryst. Growth Des. 16(3), 1360–1365 (2016)CrossRef Y. Cheng, R. Melnik, Y. Kawazoe, B. Wen, Three dimensional metallic carbon from distorting sp3-bond. Cryst. Growth Des. 16(3), 1360–1365 (2016)CrossRef
43.
Zurück zum Zitat S. Zhang, Q. Wang, X. Chen, P. Jena, Stable three-dimensional metallic carbon with interlocking hexagons. Proc. Natl. Acad. Sci. U. S. A. 110(47), 18809–18813 (2013)CrossRef S. Zhang, Q. Wang, X. Chen, P. Jena, Stable three-dimensional metallic carbon with interlocking hexagons. Proc. Natl. Acad. Sci. U. S. A. 110(47), 18809–18813 (2013)CrossRef
44.
Zurück zum Zitat J. Liu, T. Zhao, S. Zhang, Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material. Nano Energy 38, 263–270 (2017)CrossRef J. Liu, T. Zhao, S. Zhang, Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material. Nano Energy 38, 263–270 (2017)CrossRef
45.
Zurück zum Zitat C.-X. Zhao, C.-Y. Niu, Z.-J. Qin, X.Y. Ren, et al., H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network. Sci. Rep. 6, 21879 (2016)CrossRef C.-X. Zhao, C.-Y. Niu, Z.-J. Qin, X.Y. Ren, et al., H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network. Sci. Rep. 6, 21879 (2016)CrossRef
46.
Zurück zum Zitat A. Pokropivny, S. Volz, ‘C8 phase’: supercubane, tetrahedral, BC-8 or carbon sodalite? Phys. Status Solidi B 249(9), 1704–1708 (2012)CrossRef A. Pokropivny, S. Volz, ‘C8 phase’: supercubane, tetrahedral, BC-8 or carbon sodalite? Phys. Status Solidi B 249(9), 1704–1708 (2012)CrossRef
47.
Zurück zum Zitat R.L. Johnston, R. Hoffmann, Superdense carbon, C8: supercubane or analog of .gamma.-silicon? J. Am. Chem. Soc. 111(3), 810–819 (1989)CrossRef R.L. Johnston, R. Hoffmann, Superdense carbon, C8: supercubane or analog of .gamma.-silicon? J. Am. Chem. Soc. 111(3), 810–819 (1989)CrossRef
48.
Zurück zum Zitat D. Sharapa, A. Hirsch, B. Meyer, T. Clark, Cubic C8: an observable allotrope of carbon? Chem. Phys. Chem. 16(10), 2165–2171 (2015)CrossRef D. Sharapa, A. Hirsch, B. Meyer, T. Clark, Cubic C8: an observable allotrope of carbon? Chem. Phys. Chem. 16(10), 2165–2171 (2015)CrossRef
49.
Zurück zum Zitat M. Hu, F. Tian, Z. Zhao, et al., Exotic cubic carbon allotropes. J. Phys. Chem. C 116(45), 24233–24238 (2012)CrossRef M. Hu, F. Tian, Z. Zhao, et al., Exotic cubic carbon allotropes. J. Phys. Chem. C 116(45), 24233–24238 (2012)CrossRef
50.
Zurück zum Zitat P. Liu, H. Cui, G.W. Yang, Synthesis of body-centered cubic carbon nanocrystals. Cryst. Growth Des. 8(2), 581–586 (2008)CrossRef P. Liu, H. Cui, G.W. Yang, Synthesis of body-centered cubic carbon nanocrystals. Cryst. Growth Des. 8(2), 581–586 (2008)CrossRef
51.
Zurück zum Zitat P. Liu, Y.L. Cao, C.X. Wang, X.Y. Chen, G.W. Yang, Micro- and nanocubes of carbon with C8-like and blue luminescence. Nano Lett. 8(8), 2570–2575 (2008)CrossRef P. Liu, Y.L. Cao, C.X. Wang, X.Y. Chen, G.W. Yang, Micro- and nanocubes of carbon with C8-like and blue luminescence. Nano Lett. 8(8), 2570–2575 (2008)CrossRef
52.
Zurück zum Zitat W.J. Yin, Y.P. Chen, Y.E. Xie, L.M. Liu, S.B. Zhang, A low-surface energy carbon allotrope: the case for bcc-C6. Phys. Chem. Chem. Phys. 17(21), 14083–14087 (2015)CrossRef W.J. Yin, Y.P. Chen, Y.E. Xie, L.M. Liu, S.B. Zhang, A low-surface energy carbon allotrope: the case for bcc-C6. Phys. Chem. Chem. Phys. 17(21), 14083–14087 (2015)CrossRef
53.
Zurück zum Zitat K. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys. Rev. Lett. 104, 125504 (2010)CrossRef K. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys. Rev. Lett. 104, 125504 (2010)CrossRef
54.
Zurück zum Zitat X.-F. Zhou, G.-R. Qian, X. Dong, L. Zhang, Y. Tian, H.-T. Wang, Ab initio study of the formation of transparent carbon under pressure. Phys. Rev. B 82, 134126 (2010)CrossRef X.-F. Zhou, G.-R. Qian, X. Dong, L. Zhang, Y. Tian, H.-T. Wang, Ab initio study of the formation of transparent carbon under pressure. Phys. Rev. B 82, 134126 (2010)CrossRef
55.
Zurück zum Zitat H.-J. Cui, Q.-B. Yan, X.-L. Sheng, et al., The geometric and electronic transitions in body-centered-tetragonal C8: a first principle study. Carbon 120, 89–94 (2017)CrossRef H.-J. Cui, Q.-B. Yan, X.-L. Sheng, et al., The geometric and electronic transitions in body-centered-tetragonal C8: a first principle study. Carbon 120, 89–94 (2017)CrossRef
56.
Zurück zum Zitat L. Qing-Kun, Y. Sun, Y. Zhou, F.L. Zeng, First principles study of the uniaxial compressive strength of bct-C4 carbon allotrope. Acta Phys. Sin. 61(9), 093104 (2012) L. Qing-Kun, Y. Sun, Y. Zhou, F.L. Zeng, First principles study of the uniaxial compressive strength of bct-C4 carbon allotrope. Acta Phys. Sin. 61(9), 093104 (2012)
57.
Zurück zum Zitat L.A. Openov, V.F. Elesin, Prismane C8: a new form of carbon? J. Exp. Theor. Phys. Lett. 68(9), 726–731 (1998)CrossRef L.A. Openov, V.F. Elesin, Prismane C8: a new form of carbon? J. Exp. Theor. Phys. Lett. 68(9), 726–731 (1998)CrossRef
58.
Zurück zum Zitat V.F. Elesin, A.I. Podlivaev, L.A. Openov, Meta-stability of the three-dimensional carbon cluster Prismane. Phys. Low-Dim. Struct. 11/12, 91 (2000) V.F. Elesin, A.I. Podlivaev, L.A. Openov, Meta-stability of the three-dimensional carbon cluster Prismane. Phys. Low-Dim. Struct. 11/12, 91 (2000)
59.
Zurück zum Zitat N.N. Degtyarenko, V.F. Elesin, N.E. L’vov, L.A. Openov, A.I. Podlivaev, Metastable quasi-one-dimensional ensembles of C8 clusters. Phys. Solid State 45(5), 1002–1003 (2003)CrossRef N.N. Degtyarenko, V.F. Elesin, N.E. L’vov, L.A. Openov, A.I. Podlivaev, Metastable quasi-one-dimensional ensembles of C8 clusters. Phys. Solid State 45(5), 1002–1003 (2003)CrossRef
60.
Zurück zum Zitat M. Itoh, M. Kotani, H. Naito, et al., New metallic carbon crystal. Phys. Rev. Lett. 102, 055703 (2009)CrossRef M. Itoh, M. Kotani, H. Naito, et al., New metallic carbon crystal. Phys. Rev. Lett. 102, 055703 (2009)CrossRef
61.
Zurück zum Zitat N.U. Zhanpeisov, Theoretical DFT study on structure and chemical activity of new carbon K4 clusters. Res. Chem. Intermed. 39, 2141–2148 (2013)CrossRef N.U. Zhanpeisov, Theoretical DFT study on structure and chemical activity of new carbon K4 clusters. Res. Chem. Intermed. 39, 2141–2148 (2013)CrossRef
62.
Zurück zum Zitat H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)CrossRef H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)CrossRef
63.
Zurück zum Zitat W. Xu, G. Zhang, B. Li, Thermal conductivity of penta-graphene from molecular dynamics study. J. Chem. Phys. 143, 154703 (2015)CrossRef W. Xu, G. Zhang, B. Li, Thermal conductivity of penta-graphene from molecular dynamics study. J. Chem. Phys. 143, 154703 (2015)CrossRef
64.
Zurück zum Zitat Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization. Nano Res. 10(11), 3865–3874 (2017)CrossRef Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization. Nano Res. 10(11), 3865–3874 (2017)CrossRef
65.
Zurück zum Zitat S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation. Mol. Simul. 42(17), 1485–1489 (2016)CrossRef S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation. Mol. Simul. 42(17), 1485–1489 (2016)CrossRef
66.
Zurück zum Zitat X. Wu, V. Varshney, J. Lee, T. Zhang, et al., Hydrogenation of Penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett. 16(6), 3925–3935 (2016)CrossRef X. Wu, V. Varshney, J. Lee, T. Zhang, et al., Hydrogenation of Penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett. 16(6), 3925–3935 (2016)CrossRef
67.
Zurück zum Zitat B. Xiao, Y.-c. Li, X.-f. Yu, J.-b. Cheng, Penta-graphene: a promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate. ACS Appl. Mater. Interfaces 8(51), 35342–35352 (2016)CrossRef B. Xiao, Y.-c. Li, X.-f. Yu, J.-b. Cheng, Penta-graphene: a promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate. ACS Appl. Mater. Interfaces 8(51), 35342–35352 (2016)CrossRef
68.
Zurück zum Zitat B. Rajbanshi, S. Sarkar, B. Mandal, P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons. Carbon 100, 118–125 (2016)CrossRef B. Rajbanshi, S. Sarkar, B. Mandal, P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons. Carbon 100, 118–125 (2016)CrossRef
69.
Zurück zum Zitat S. Zhang, J. Zhouc, Q. Wang, et al., Penta-graphene: a new carbon allotrope. PNAS 112(8), 2372–2377 (2015)CrossRef S. Zhang, J. Zhouc, Q. Wang, et al., Penta-graphene: a new carbon allotrope. PNAS 112(8), 2372–2377 (2015)CrossRef
70.
Zurück zum Zitat C.P. Ewels, X. Rocquefelte, H.W. Kroto, et al., Predicting experimentally stable allotropes: instability of penta-graphene. PNAS 112(51), 15609–15612 (2015) C.P. Ewels, X. Rocquefelte, H.W. Kroto, et al., Predicting experimentally stable allotropes: instability of penta-graphene. PNAS 112(51), 15609–15612 (2015)
71.
Zurück zum Zitat J.J. Quijano-Briones, H.N. Fernández-Escamilla, A. Tlahuice-Flores, Chiral penta-graphene nanotubes: structure, bonding and electronic properties. Comput. Theor. Chem. 1108, 70–75 (2017)CrossRef J.J. Quijano-Briones, H.N. Fernández-Escamilla, A. Tlahuice-Flores, Chiral penta-graphene nanotubes: structure, bonding and electronic properties. Comput. Theor. Chem. 1108, 70–75 (2017)CrossRef
72.
Zurück zum Zitat M. Chen, H. Zhan, Y. Zhu, H. Wu, Y. Gu, Mechanical properties of Penta-graphene nanotubes. J. Phys. Chem. C 121(17), 9642–9647 (2017)CrossRef M. Chen, H. Zhan, Y. Zhu, H. Wu, Y. Gu, Mechanical properties of Penta-graphene nanotubes. J. Phys. Chem. C 121(17), 9642–9647 (2017)CrossRef
73.
Zurück zum Zitat H. Sun, S. Mukherjee, C. Veer Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736–26742 (2016)CrossRef H. Sun, S. Mukherjee, C. Veer Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736–26742 (2016)CrossRef
74.
Zurück zum Zitat P. Avramov, V. Demin, M. Luo, et al., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings. J. Phys. Chem. Lett. 6(22), 4525–4531 (2015)CrossRef P. Avramov, V. Demin, M. Luo, et al., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings. J. Phys. Chem. Lett. 6(22), 4525–4531 (2015)CrossRef
75.
Zurück zum Zitat T. Stauber, J.I. Beltrán, J. Schliemann, Tight-binding approach to pentagraphene. Sci. Rep. 6(22672), 8 (2016) T. Stauber, J.I. Beltrán, J. Schliemann, Tight-binding approach to pentagraphene. Sci. Rep. 6(22672), 8 (2016)
76.
Zurück zum Zitat O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Metamorphosis in carbon network: from penta-graphene to biphenylene under uniaxial tension. FlatChem 1, 65–73 (2017)CrossRef O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Metamorphosis in carbon network: from penta-graphene to biphenylene under uniaxial tension. FlatChem 1, 65–73 (2017)CrossRef
77.
Zurück zum Zitat X. Rocquefelte, G.-M. Rignanese, V. Meunier, et al., How to identify Haeckelite structures: a theoretical study of their electronic and vibrational properties. Nano Lett. 4(5), 805–810 (2004)CrossRef X. Rocquefelte, G.-M. Rignanese, V. Meunier, et al., How to identify Haeckelite structures: a theoretical study of their electronic and vibrational properties. Nano Lett. 4(5), 805–810 (2004)CrossRef
78.
Zurück zum Zitat H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.C. Charlier, P.M. Ajayan, New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716 (2000)CrossRef H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.C. Charlier, P.M. Ajayan, New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716 (2000)CrossRef
79.
Zurück zum Zitat P. Lambin, L.P. Biró, Structural properties of Haeckelite nanotubes. New J. Phys. 5, 141 (2003)CrossRef P. Lambin, L.P. Biró, Structural properties of Haeckelite nanotubes. New J. Phys. 5, 141 (2003)CrossRef
80.
Zurück zum Zitat G. Mpourmpakis, G.E. Froudakis, Haeckelites: a promising anode material for lithium batteries application. An ab initio and molecular dynamics theoretical study. Appl. Phys. Lett. 89, 233125 (2006)CrossRef G. Mpourmpakis, G.E. Froudakis, Haeckelites: a promising anode material for lithium batteries application. An ab initio and molecular dynamics theoretical study. Appl. Phys. Lett. 89, 233125 (2006)CrossRef
81.
Zurück zum Zitat Z. Zhu, Z.G. Fthenakis, D. Tomanek, Electronic structure and transport in graphene/haeckelite hybrids: an Ab Initio study. arXiv:1502.07050, 2015; 2D Mater. 2015, 2, 035001 Z. Zhu, Z.G. Fthenakis, D. Tomanek, Electronic structure and transport in graphene/haeckelite hybrids: an Ab Initio study. arXiv:1502.07050, 2015; 2D Mater. 2015, 2, 035001
82.
Zurück zum Zitat Z. Wang, X.-F. Zhou, X. Zhang, et al., Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones. Nano Lett. 15(9), 6182–6186 (2015)CrossRef Z. Wang, X.-F. Zhou, X. Zhang, et al., Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones. Nano Lett. 15(9), 6182–6186 (2015)CrossRef
83.
Zurück zum Zitat Z. Wang, X.-F. Zhou, X. Zhang, et al., Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones. arXiv:1506.04824, 2015 Z. Wang, X.-F. Zhou, X. Zhang, et al., Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones. arXiv:1506.04824, 2015
84.
Zurück zum Zitat A.I. Podlivaev, L.A. Openov, Possible nonplanar structure of phagraphene and its thermal stability. Pis'ma v Zh. Èksper. Teoret. Fiz. 103(3), 204–208 (2016) A.I. Podlivaev, L.A. Openov, Possible nonplanar structure of phagraphene and its thermal stability. Pis'ma v Zh. Èksper. Teoret. Fiz. 103(3), 204–208 (2016)
85.
Zurück zum Zitat L.F.C. Pereira, B. Mortazavi, M. Makaremic, T. Rabczukde, Anisotropic thermal conductivity and mechanical properties of phagraphene: a molecular dynamics study. RSC Adv. 6, 57773–57779 (2016)CrossRef L.F.C. Pereira, B. Mortazavi, M. Makaremic, T. Rabczukde, Anisotropic thermal conductivity and mechanical properties of phagraphene: a molecular dynamics study. RSC Adv. 6, 57773–57779 (2016)CrossRef
86.
Zurück zum Zitat A.Y. Luo, R. Hu, Z.Q. Fan, H.L. Zhang, J.H. Yuan, C.H. Yang, Z.H. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping. Org. Electron. 51, 277–286 (2017)CrossRef A.Y. Luo, R. Hu, Z.Q. Fan, H.L. Zhang, J.H. Yuan, C.H. Yang, Z.H. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping. Org. Electron. 51, 277–286 (2017)CrossRef
87.
Zurück zum Zitat Y. Liu, Z. Chen, S. Hu, G. Yu, Y. Peng, The influence of silicon atom doping phagraphene nanoribbons on the electronic and magnetic properties. Mater. Sci. Eng. B 220, 30–36 (2017)CrossRef Y. Liu, Z. Chen, S. Hu, G. Yu, Y. Peng, The influence of silicon atom doping phagraphene nanoribbons on the electronic and magnetic properties. Mater. Sci. Eng. B 220, 30–36 (2017)CrossRef
88.
Zurück zum Zitat D. Ferguson, D.J. Searles, M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials. ACS Appl. Mater. Interfaces 9(24), 20577–20584 (2017)CrossRef D. Ferguson, D.J. Searles, M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials. ACS Appl. Mater. Interfaces 9(24), 20577–20584 (2017)CrossRef
89.
Zurück zum Zitat L.A. Openov, A.I. Podlivaev, Various stone–wales defects in phagraphene. Phys. Solid State 58(8), 1705–1710 (2016)CrossRef L.A. Openov, A.I. Podlivaev, Various stone–wales defects in phagraphene. Phys. Solid State 58(8), 1705–1710 (2016)CrossRef
90.
Zurück zum Zitat L.A. Openov, A.I. Podlivaev, Negative poisson’s ratio in a nonplanar phagraphene. Phys. Solid State 59(6), 1267–1269 (2017)CrossRef L.A. Openov, A.I. Podlivaev, Negative poisson’s ratio in a nonplanar phagraphene. Phys. Solid State 59(6), 1267–1269 (2017)CrossRef
91.
Zurück zum Zitat D. Wu, S. Wang, J. Yuan, B. Yang, H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination. Phys. Chem. Chem. Phys. 19, 11771–11777 (2017)CrossRef D. Wu, S. Wang, J. Yuan, B. Yang, H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination. Phys. Chem. Chem. Phys. 19, 11771–11777 (2017)CrossRef
92.
Zurück zum Zitat X. Jiang, C. Århammar, P. Liu, J. Zhao, R. Ahuja, The R3-carbon allotrope: a pathway towards glassy carbon under high pressure. Sci. Rep. 3, 1877 (2013)CrossRef X. Jiang, C. Århammar, P. Liu, J. Zhao, R. Ahuja, The R3-carbon allotrope: a pathway towards glassy carbon under high pressure. Sci. Rep. 3, 1877 (2013)CrossRef
93.
Zurück zum Zitat Y. Liu, M. Lu, M. Zhang, First-principles study of a novel superhard sp3 carbon allotrope. Phys. Lett. A 378(45), 3326–3330 (2014)CrossRef Y. Liu, M. Lu, M. Zhang, First-principles study of a novel superhard sp3 carbon allotrope. Phys. Lett. A 378(45), 3326–3330 (2014)CrossRef
94.
Zurück zum Zitat M. Xing, B. Li, Z. Yu, Q. Chen, A reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 9, 484 (2016). 15 ppCrossRef M. Xing, B. Li, Z. Yu, Q. Chen, A reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 9, 484 (2016). 15 ppCrossRef
95.
Zurück zum Zitat Q. Zhu, A.R. Oganov, M.A. Salvadó, P. Pertierra, A.O. Lyakhov, Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410 (2011)CrossRef Q. Zhu, A.R. Oganov, M.A. Salvadó, P. Pertierra, A.O. Lyakhov, Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410 (2011)CrossRef
Metadaten
Titel
Predicted Carbon Forms
verfasst von
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.