Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 10/2019

30.11.2018 | Original Article

Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine

verfasst von: Xiaoli Su, Sen Zhang, Yixin Yin, Wendong Xiao

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the blast furnace production site, the disposable thermocouple is used to measure the hot metal temperature. However, this method is not only inconvenient for continuous data acquisition but also costly for the use of one-time thermocouple. Hence, this paper establishes a prediction model to predict the hot metal temperature. Before the prediction model is established, the corresponding factors of influencing the hot metal temperature are selected, and the noises of production data are removed. In this paper, multi-layer extreme learning machine (ML-ELM) is used as the prediction algorithm of the prediction model. However, the input weights, hidden layer weights and hidden biases of ML-ELM are randomly selected, and the solution of the output weights is based on them, which makes ML-ELM inevitably have a set of non-optimal or unnecessary weights and biases. In addition, ML-ELM may suffer from over-fitting problem. Hence, this paper uses the adaptive particle swarm optimization (APSO) and the ensemble model to improve ML-ELM, and the improved algorithm is named as EAPSO-ML-ELM. APSO can optimize the selections of the input weights, hidden layer weights and hidden biases, the ensemble model can alleviate the over-fitting problem, i.e., this paper combines several of the optimized ML-ELMs which have different input weights, hidden layer weights and hidden biases. Finally, this paper also uses other algorithms to establish the prediction model, and simulation results demonstrate that the prediction model based on EAPSO-ML-ELM has better prediction accuracy and generalization performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Wang XL (2000) Iron and steel metallurgy (iron parts). Metallurgical Industry Press, Beijing Wang XL (2000) Iron and steel metallurgy (iron parts). Metallurgical Industry Press, Beijing
2.
Zurück zum Zitat Radhakrishnan VR, Ram KM (2001) Mathematical model for predictive control of the bell-less top charging system of a blast furnace. J Process Control 11(5):565–586CrossRef Radhakrishnan VR, Ram KM (2001) Mathematical model for predictive control of the bell-less top charging system of a blast furnace. J Process Control 11(5):565–586CrossRef
3.
Zurück zum Zitat Geerdes M, Toxopeus H, van der Vliet C (2009) Modern blast furnace ironmaking: an introduction, vol 4. Ios Press, Amsterdam Geerdes M, Toxopeus H, van der Vliet C (2009) Modern blast furnace ironmaking: an introduction, vol 4. Ios Press, Amsterdam
4.
Zurück zum Zitat Gao CH, Ge QH, Jian L (2014) Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making. IEEE Trans Fuzzy Syst 22(3):586–596CrossRef Gao CH, Ge QH, Jian L (2014) Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making. IEEE Trans Fuzzy Syst 22(3):586–596CrossRef
5.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of international joint conference on neural networks (IJCNN2004), vol 2, pp 985–990 Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of international joint conference on neural networks (IJCNN2004), vol 2, pp 985–990
6.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
7.
Zurück zum Zitat Li AL, Zhao YM, Cui GM (2015) Prediction model of blast furnace temperature based on ELM with grey correlation analysis. J Iron Steel 27(11):33–37 Li AL, Zhao YM, Cui GM (2015) Prediction model of blast furnace temperature based on ELM with grey correlation analysis. J Iron Steel 27(11):33–37
8.
Zurück zum Zitat Zhang HG, Yin YX, Zhang S (2016) An improved ELM algorithm for the measurement of hot metal temperature in blast furnace. Neurocomputing 174:232–237CrossRef Zhang HG, Yin YX, Zhang S (2016) An improved ELM algorithm for the measurement of hot metal temperature in blast furnace. Neurocomputing 174:232–237CrossRef
9.
Zurück zum Zitat Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with ELMs for big data. IEEE Intell Syst 28(6):31–34 Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with ELMs for big data. IEEE Intell Syst 28(6):31–34
10.
Zurück zum Zitat Shi YH, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence, Anchorage, pp 69–73 Shi YH, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence, Anchorage, pp 69–73
11.
Zurück zum Zitat Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001CrossRef Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001CrossRef
12.
Zurück zum Zitat Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757CrossRef Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757CrossRef
13.
14.
Zurück zum Zitat Zhai JH, Xu HY, Wang XZ (2012) Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 16(9):1493–1502CrossRef Zhai JH, Xu HY, Wang XZ (2012) Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 16(9):1493–1502CrossRef
15.
Zurück zum Zitat Xue XW, Yao M, Wu ZH, Yang JH (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184CrossRef Xue XW, Yao M, Wu ZH, Yang JH (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184CrossRef
16.
Zurück zum Zitat Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M (2017) Ensemble learning for data stream analysis: a survey. Inf Fusion 37:132–156CrossRef Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M (2017) Ensemble learning for data stream analysis: a survey. Inf Fusion 37:132–156CrossRef
17.
Zurück zum Zitat Zhai JH, Zang LG, Zhou ZY (2018) Ensemble dropout extreme learning machine via fuzzy integral for data classification. Neurocomputing 275:1043–1052CrossRef Zhai JH, Zang LG, Zhou ZY (2018) Ensemble dropout extreme learning machine via fuzzy integral for data classification. Neurocomputing 275:1043–1052CrossRef
18.
Zurück zum Zitat Zhou ZH, Wu JX, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263MathSciNetCrossRef Zhou ZH, Wu JX, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263MathSciNetCrossRef
19.
Zurück zum Zitat Zhai JH, Zhang SF, Wang CX (2017) The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef Zhai JH, Zhang SF, Wang CX (2017) The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef
20.
Zurück zum Zitat Zhang L, Shah SK, Kakadiaris IA (2017) Hierarchical multi-label classification using fully associative ensemble learning. Pattern Recognit 70:89–103CrossRef Zhang L, Shah SK, Kakadiaris IA (2017) Hierarchical multi-label classification using fully associative ensemble learning. Pattern Recognit 70:89–103CrossRef
22.
Zurück zum Zitat Moran J, Granada E, Míguez JL, Porteiro J (2006) Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Process Technol 87(2):123–127CrossRef Moran J, Granada E, Míguez JL, Porteiro J (2006) Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Process Technol 87(2):123–127CrossRef
23.
Zurück zum Zitat Gao CH, Jian L, Chen JM, Sun YX (2009) Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process. Acta Autom Sin 35(6):725–730CrossRef Gao CH, Jian L, Chen JM, Sun YX (2009) Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process. Acta Autom Sin 35(6):725–730CrossRef
24.
Zurück zum Zitat Madadi Z, Anand GV, Premkumar AB (2013) Signal detection in generalized gaussian noise by nonlinear wavelet denoising. IEEE Trans Circuits Syst I Reg Pap 60(11):2973–2986CrossRef Madadi Z, Anand GV, Premkumar AB (2013) Signal detection in generalized gaussian noise by nonlinear wavelet denoising. IEEE Trans Circuits Syst I Reg Pap 60(11):2973–2986CrossRef
25.
Zurück zum Zitat Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRef Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRef
26.
Zurück zum Zitat Mao WT, Wang JN, Xue ZN (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345CrossRef Mao WT, Wang JN, Xue ZN (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345CrossRef
29.
Zurück zum Zitat Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef
30.
Zurück zum Zitat Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural network, pp 1942–1948 Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural network, pp 1942–1948
31.
Zurück zum Zitat Eberhart R, Shi YH (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 81–86 Eberhart R, Shi YH (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 81–86
32.
Zurück zum Zitat Kennedy J (2010) Particle swarm optimization.In: Encyclopedia of machine learning. Springer, Berlin, US, pp 760–766 Kennedy J (2010) Particle swarm optimization.In: Encyclopedia of machine learning. Springer, Berlin, US, pp 760–766
33.
Zurück zum Zitat Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern 39(6):1362–1381CrossRef Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern 39(6):1362–1381CrossRef
34.
Zurück zum Zitat Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38(10):1759–1763CrossRef Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38(10):1759–1763CrossRef
35.
Zurück zum Zitat Ghosh R, Verma B (2003) A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning. Int J Neural Syst 13(01):13–24CrossRef Ghosh R, Verma B (2003) A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning. Int J Neural Syst 13(01):13–24CrossRef
36.
Zurück zum Zitat Han F, Yao HF, Ling QH (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93CrossRef Han F, Yao HF, Ling QH (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93CrossRef
37.
Zurück zum Zitat Xu Y, Shu Y (2006) Evolutionary extreme learning machine-based on particle swarm optimization. In: Advances in neural networks—ISNN2006, pp 644–652CrossRef Xu Y, Shu Y (2006) Evolutionary extreme learning machine-based on particle swarm optimization. In: Advances in neural networks—ISNN2006, pp 644–652CrossRef
Metadaten
Titel
Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine
verfasst von
Xiaoli Su
Sen Zhang
Yixin Yin
Wendong Xiao
Publikationsdatum
30.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 10/2019
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-018-0897-3

Weitere Artikel der Ausgabe 10/2019

International Journal of Machine Learning and Cybernetics 10/2019 Zur Ausgabe

Neuer Inhalt