Skip to main content
Erschienen in: Geotechnical and Geological Engineering 2/2020

02.01.2020 | Original Paper

Prediction of Carbonate Aggregates Properties Through Physical Tests

verfasst von: Mojtaba Kamani, Mohammad Khaleghi Esfahani, Rassoul Ajalloeian

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most engineering projects are involving carbonate rocks in many countries. These rocks are mainly used for various purposes as construction materials for road pavements, Portland cement concrete, building stone, etc. Two important parameters for these projects are the intact rock strength as uniaxial compressive strength (UCS) and crushed rock strength as aggregate crushing value (ACV). Sometimes it is impossible to obtain suitable samples for these tests. Therefore, predicting models have widely used as alternative methods. Since the rock physical properties affect its strength, these properties have been considered to predict UCS and ACV. The main purpose of this study is the application of simple regression, multiple regressions, i.e., linear and non-linear, and artificial neural networks (ANN) to predict the strength properties of carbonate aggregates. In the present paper, 28 samples of carbonate aggregates are studied. The simple physical experiment including porosity (η), density (r), and water absorption by weight (Wabs), and rock strength experiment including UCS and ACV are carried out. Consequently, the best relationships between carbonate aggregate strength and physical properties are determined. Different statistical techniques are used for evaluating and determining the accuracy of empirical equations. The results of the correlation coefficient and significant level indicate that physical properties have significant correlations with ACV and UCS. Subsequent linear and non-linear regression analyses revealed that Wabs and r are the most valid indirect tests to estimate ACV and UCS, respectively. Also, the results indicated that the ANN model showed higher accuracy for predicting UCS (R2 = 0.92) and ACV (R2 = 0.95) than regression models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdi Y, Taheri Garavand A, Zarei Sahamieh R (2018) Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab J Geosci 11:587 Abdi Y, Taheri Garavand A, Zarei Sahamieh R (2018) Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab J Geosci 11:587
Zurück zum Zitat Afolagboye LO, Oyelami AO, Talabi CA (2017) The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria. J Afr Earth Sci 129:659–667 Afolagboye LO, Oyelami AO, Talabi CA (2017) The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria. J Afr Earth Sci 129:659–667
Zurück zum Zitat Ajalloeian R, Kamani M (2019) An investigation of the relationship between Los Angeles abrasion loss and rock texture for carbonate aggregates. Bull Eng Geol Environ 78(3):1555–1563 Ajalloeian R, Kamani M (2019) An investigation of the relationship between Los Angeles abrasion loss and rock texture for carbonate aggregates. Bull Eng Geol Environ 78(3):1555–1563
Zurück zum Zitat Al-Harthi A, Aifan A (2001) A field index to determine the strength characteristics of crushed aggregate. Bull Eng Geol Environ 60(3):193–200 Al-Harthi A, Aifan A (2001) A field index to determine the strength characteristics of crushed aggregate. Bull Eng Geol Environ 60(3):193–200
Zurück zum Zitat Asadi M, Hossein BM, Eftekhari M (2013) Development of optimal fuzzy models for predicting the strength of intact rocks. Comput Geosci 54:107–112 Asadi M, Hossein BM, Eftekhari M (2013) Development of optimal fuzzy models for predicting the strength of intact rocks. Comput Geosci 54:107–112
Zurück zum Zitat ASTM, ASTM D2938 (1986) Standard test method of unconfined compressive strength of intact rock core specimens. ASTM Publication, West Conshohocken ASTM, ASTM D2938 (1986) Standard test method of unconfined compressive strength of intact rock core specimens. ASTM Publication, West Conshohocken
Zurück zum Zitat Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18:699–709 Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18:699–709
Zurück zum Zitat Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Sys Appl 35(1–2):111–123 Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Sys Appl 35(1–2):111–123
Zurück zum Zitat Beiki M, Majdi A, Givshad AD (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int J Rock Mech Min Sci 63:159–169 Beiki M, Majdi A, Givshad AD (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int J Rock Mech Min Sci 63:159–169
Zurück zum Zitat Bejarbaneh BY, Bejarbaneh EY, Amin MFM, Fahimifar A, Jahed AD, Majid MZA (2018) Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems. Bull Eng Geol Environ 77:345–361 Bejarbaneh BY, Bejarbaneh EY, Amin MFM, Fahimifar A, Jahed AD, Majid MZA (2018) Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems. Bull Eng Geol Environ 77:345–361
Zurück zum Zitat Bieniawski ZT (1974) Estimating the strength of rock materials. J South Afr Inst Min Metall 74(8):312–320 Bieniawski ZT (1974) Estimating the strength of rock materials. J South Afr Inst Min Metall 74(8):312–320
Zurück zum Zitat Bruno G, Vessia G, Bobbo L (2013) Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng 46(1):199–206 Bruno G, Vessia G, Bobbo L (2013) Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng 46(1):199–206
Zurück zum Zitat BS 812-110 (1990) Testing aggregates. Methods for determination of aggregate crushing value (ACV). British Standard Institution (BSI), London BS 812-110 (1990) Testing aggregates. Methods for determination of aggregate crushing value (ACV). British Standard Institution (BSI), London
Zurück zum Zitat Burchette TP (2012) Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geol Soc Lond Spec Publ 370(1):17–37 Burchette TP (2012) Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geol Soc Lond Spec Publ 370(1):17–37
Zurück zum Zitat Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819 Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819
Zurück zum Zitat Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51(3–4):223–237 Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51(3–4):223–237
Zurück zum Zitat Çobanoğlu İ, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67(4):491–498 Çobanoğlu İ, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67(4):491–498
Zurück zum Zitat Colback PSB, Wiid BL (1965) The influence of moisture content on the compressive strength of rocks. Geophysics Colback PSB, Wiid BL (1965) The influence of moisture content on the compressive strength of rocks. Geophysics
Zurück zum Zitat Deere DU, Miller RP (1966) Engineering classification and index properties for intact rock. Department of Civil Engineering, Illinois University, Urbana Deere DU, Miller RP (1966) Engineering classification and index properties for intact rock. Department of Civil Engineering, Illinois University, Urbana
Zurück zum Zitat Dehghan S, Sattari GH, Chelgani SC, Aliabadi MA (2010) Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Min Sci Technol (China) 20(1):41–46 Dehghan S, Sattari GH, Chelgani SC, Aliabadi MA (2010) Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Min Sci Technol (China) 20(1):41–46
Zurück zum Zitat Del Potro R, Hürlimann M (2009) A comparison of different indirect techniques to evaluate volcanic intact rock strength. Rock Mech Rock Eng 42(6):931–938 Del Potro R, Hürlimann M (2009) A comparison of different indirect techniques to evaluate volcanic intact rock strength. Rock Mech Rock Eng 42(6):931–938
Zurück zum Zitat Esfahani MK, Kamani M, Ajalloeian R (2019) An investigation of the general relationships between abrasion resistance of aggregates and rock aggregate properties. Bull Eng Geol Environ 78(6):3959–3968 Esfahani MK, Kamani M, Ajalloeian R (2019) An investigation of the general relationships between abrasion resistance of aggregates and rock aggregate properties. Bull Eng Geol Environ 78(6):3959–3968
Zurück zum Zitat Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Q J Eng Geol Hydrogeol 25(2):115–130 Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Q J Eng Geol Hydrogeol 25(2):115–130
Zurück zum Zitat Heidari M, Mohseni H, Jalali SH (2018) Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotech Geol Eng 36(1):401–412 Heidari M, Mohseni H, Jalali SH (2018) Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotech Geol Eng 36(1):401–412
Zurück zum Zitat ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay H (ed) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics, ISRM Turkish National Group, Ankara ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay H (ed) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics, ISRM Turkish National Group, Ankara
Zurück zum Zitat Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994 Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994
Zurück zum Zitat Kainthola A, Singh PK, Verma D, Singh R, Sarkar K, Singh TN (2015) Prediction of strength parameters of Himalayan rocks: a statistical and ANFIS approach. Geotech Geol Eng 33(5):1255–1278 Kainthola A, Singh PK, Verma D, Singh R, Sarkar K, Singh TN (2015) Prediction of strength parameters of Himalayan rocks: a statistical and ANFIS approach. Geotech Geol Eng 33(5):1255–1278
Zurück zum Zitat Kamani M, Ajalloeian R (2019a) Evaluation of the mechanical degradation of carbonate aggregate by rock strength tests. J Rock Mech Geotech Eng 11:121–134 Kamani M, Ajalloeian R (2019a) Evaluation of the mechanical degradation of carbonate aggregate by rock strength tests. J Rock Mech Geotech Eng 11:121–134
Zurück zum Zitat Kamani M, Ajalloeian R (2019b) Evaluation of engineering properties of some carbonate rocks trough corrected texture coefficient. Geotech Geol Eng 37(2):599–614 Kamani M, Ajalloeian R (2019b) Evaluation of engineering properties of some carbonate rocks trough corrected texture coefficient. Geotech Geol Eng 37(2):599–614
Zurück zum Zitat Langer WH (1988) Natural aggregates of the conterminous United States. US Government Printing Office, Washington, DC Langer WH (1988) Natural aggregates of the conterminous United States. US Government Printing Office, Washington, DC
Zurück zum Zitat Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN (2016) Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 88:202–213 Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN (2016) Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 88:202–213
Zurück zum Zitat Mahrous AM, Tantawi MM, El-Sageer H (2010) Evaluation of the engineering properties of some Egyptian limestones as construction materials for highway pavements. Constr Build Mater 24(12):2598–2603 Mahrous AM, Tantawi MM, El-Sageer H (2010) Evaluation of the engineering properties of some Egyptian limestones as construction materials for highway pavements. Constr Build Mater 24(12):2598–2603
Zurück zum Zitat McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 7:115–133 McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 7:115–133
Zurück zum Zitat Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54–68 Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54–68
Zurück zum Zitat Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63 Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63
Zurück zum Zitat Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech Geol Eng 30(4):1053–1062 Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech Geol Eng 30(4):1053–1062
Zurück zum Zitat Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Pet Sci Eng 126:78–82 Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Pet Sci Eng 126:78–82
Zurück zum Zitat Omar, M., 2017. Empirical correlations for predicting strength properties of rocks–United Arab Emirates. Int J Geotech Eng 11(3):248–261 Omar, M., 2017. Empirical correlations for predicting strength properties of rocks–United Arab Emirates. Int J Geotech Eng 11(3):248–261
Zurück zum Zitat Oyler DC, Mark C, Molinda GM (2010) In situ estimation of roof rock strength using sonic logging. Int J Coal Geol 83(4):484–490 Oyler DC, Mark C, Molinda GM (2010) In situ estimation of roof rock strength using sonic logging. Int J Coal Geol 83(4):484–490
Zurück zum Zitat Přikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38(5):671–682 Přikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38(5):671–682
Zurück zum Zitat Rabbani E, Sharif F, KoolivandSalooki M, Moradzadeh A (2012) Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int J Rock Mech Min Sci 56:100–111 Rabbani E, Sharif F, KoolivandSalooki M, Moradzadeh A (2012) Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int J Rock Mech Min Sci 56:100–111
Zurück zum Zitat Rezaei M, Majdi A, Monjezi M (2012) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in long wall coal mining. Neural Comput Appl 24(1):233–241 Rezaei M, Majdi A, Monjezi M (2012) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in long wall coal mining. Neural Comput Appl 24(1):233–241
Zurück zum Zitat Romana M (1999) Correlation between uniaxial compressive and point-load (Franklin test) strengths for different rock classes. In: 9th ISRM congress. international society for rock mechanics and rock engineering Romana M (1999) Correlation between uniaxial compressive and point-load (Franklin test) strengths for different rock classes. In: 9th ISRM congress. international society for rock mechanics and rock engineering
Zurück zum Zitat Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97(1–2):80–90 Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97(1–2):80–90
Zurück zum Zitat Sharma LK, Vishal V, Singh TN (2017) Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement 102:158–169 Sharma LK, Vishal V, Singh TN (2017) Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement 102:158–169
Zurück zum Zitat Smorodinov MI, Motovilov EA, Volkov VA (1970) Determinations of correlation relationships between strength and some physical characteristics of rocks. Int Soc Rock Mech 2:35–37 Smorodinov MI, Motovilov EA, Volkov VA (1970) Determinations of correlation relationships between strength and some physical characteristics of rocks. Int Soc Rock Mech 2:35–37
Zurück zum Zitat Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43(2):224–235 Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43(2):224–235
Zurück zum Zitat Tiryaki B (2008) Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Eng Geol 99:51–60 Tiryaki B (2008) Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Eng Geol 99:51–60
Zurück zum Zitat Torabi-Kaveh M, Naseri F, Sanei S, Sarshari B (2015) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci 8:2889–2897 Torabi-Kaveh M, Naseri F, Sanei S, Sarshari B (2015) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci 8:2889–2897
Zurück zum Zitat Török Á, Kourkoulis SK (2006) Influence of fabric on the physical properties of limestones. In: Kourkoulis SK (ed) Fracture and failure of natural building stones: application in restoration of ancient monuments. Springer, Cham, pp 487–495 Török Á, Kourkoulis SK (2006) Influence of fabric on the physical properties of limestones. In: Kourkoulis SK (ed) Fracture and failure of natural building stones: application in restoration of ancient monuments. Springer, Cham, pp 487–495
Zurück zum Zitat Török Á, Vásárhelyi B (2010) The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng Geol 115(3–4):237–245 Török Á, Vásárhelyi B (2010) The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng Geol 115(3–4):237–245
Zurück zum Zitat Tugrul A, Zarif IH (2000) Engineering aspects of limestone weathering in Istanbul, Turkey. Bull Eng Geol Environ 58(3):191–206 Tugrul A, Zarif IH (2000) Engineering aspects of limestone weathering in Istanbul, Turkey. Bull Eng Geol Environ 58(3):191–206
Zurück zum Zitat Tunç ET (2018) An experimental investigation on the abrasion strength of aggregate: Elazığ Province calcareous aggregate. Bitlis Eren Univ J Sci Technol 8(2):75–80 Tunç ET (2018) An experimental investigation on the abrasion strength of aggregate: Elazığ Province calcareous aggregate. Bitlis Eren Univ J Sci Technol 8(2):75–80
Zurück zum Zitat Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82 Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82
Zurück zum Zitat Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods Geomech 36(14):1636–1650 Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods Geomech 36(14):1636–1650
Zurück zum Zitat Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122 Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122
Zurück zum Zitat Yilmaz I (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46:803–810 Yilmaz I (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46:803–810
Zurück zum Zitat Yilmaz I, Yuksek (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795 Yilmaz I, Yuksek (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795
Zurück zum Zitat Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158 Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158
Metadaten
Titel
Prediction of Carbonate Aggregates Properties Through Physical Tests
verfasst von
Mojtaba Kamani
Mohammad Khaleghi Esfahani
Rassoul Ajalloeian
Publikationsdatum
02.01.2020
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 2/2020
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-019-01155-x

Weitere Artikel der Ausgabe 2/2020

Geotechnical and Geological Engineering 2/2020 Zur Ausgabe