Skip to main content

2016 | OriginalPaper | Buchkapitel

Prediction of Ductility-Dip Cracking in Narrow Groove Welds Using Computer Simulation of Strain Accumulation

verfasst von : Steven L. McCracken, Jonathan K. Tatman

Erschienen in: Cracking Phenomena in Welds IV

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ductility-dip cracking (DDC) in high chromium nickel-base weld metals has been an issue during fabrication and repair of nuclear power plant components for many years. DDC is a solid-state cracking phenomenon, and several theories [110] have been proposed for the mechanism. Research conducted to develop these theories has primarily been performed using test methods involving small-scale specimens that may not replicate actual welding conditions (e.g., strain-to-fracture, hot-ductility, and varestraint). Due to the complexities of welding, there are potentially significant differences in the strain, strain-rates, stresses, and thermal cycles that can occur between these small-scale test methods and actual welding conditions. To eliminate this uncertainty, a high-restraint, narrow groove weld mockup was developed to assess DDC in this work. Filler metals 52 and 52M (AWS specifications ERNiCrFe-7 and ERNiCrFe-7A, respectively), compositions considered susceptible to DDC, are deposited with cold wire GTAW in a narrow groove with precise heat input and bead placement controls to isolate the occurrence of DDC to a known region of the weld deposit. Computer modeling using SysWeld with validated weld parameter inputs was also performed to simulate the narrow groove weld. Comparison of test specimens to computer simulations shows that the highest occurrence of DDC is in weld regions with multiple reheat cycles and high strain accumulation. This and future work is intended to develop a method to predict DDC susceptibility in multi-pass welds and to develop procedures and techniques that minimize the occurrence of DDC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramirez A.J. and Lippold, J.C. 2004. High temperature cracking in nickel- base weld metal, Part 2– Insight into the mechanism, Materials Science and Engineering A, 380: 245-258. Ramirez A.J. and Lippold, J.C. 2004. High temperature cracking in nickel- base weld metal, Part 2– Insight into the mechanism, Materials Science and Engineering A, 380: 245-258.
2.
Zurück zum Zitat Collins, M. G., Ramirez, A. J., and Lippold, J. C. 2004. An investigation of ductility dip cracking in nickel-based weld metals — Part 3. Welding Journal 83: 39-s to 49-s. Collins, M. G., Ramirez, A. J., and Lippold, J. C. 2004. An investigation of ductility dip cracking in nickel-based weld metals — Part 3. Welding Journal 83: 39-s to 49-s.
3.
Zurück zum Zitat Noecker, F.F. II, and Dupont, J.N. 2009. Metallurgical Investigation into Ductility Dip Cracking in Ni-Based Alloys: Part 2. Welding Journal 88: 62-s to 77-s. Noecker, F.F. II, and Dupont, J.N. 2009. Metallurgical Investigation into Ductility Dip Cracking in Ni-Based Alloys: Part 2. Welding Journal 88: 62-s to 77-s.
4.
Zurück zum Zitat Young, G. A., Capobianco, T.E., Penik, M.A., Morris, B.W., and McGee, J.J. 2008. The Mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys. Welding Journal 87: 31(s)-43(s). Young, G. A., Capobianco, T.E., Penik, M.A., Morris, B.W., and McGee, J.J. 2008. The Mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys. Welding Journal 87: 31(s)-43(s).
5.
Zurück zum Zitat Nishimoto, K., Saida, K., Okauchi, H., and Ohta, K. 2006. Microcracking in multipass weld metal of Alloy 690. Part 2: Microcracking mechanism in reheated weld metal. Science and Technology of Welding and Joining 11(4): 462-470. Nishimoto, K., Saida, K., Okauchi, H., and Ohta, K. 2006. Microcracking in multipass weld metal of Alloy 690. Part 2: Microcracking mechanism in reheated weld metal. Science and Technology of Welding and Joining 11(4): 462-470.
6.
Zurück zum Zitat Nishimoto, K., Saida, K., Okauchi, H., and Ohta, K. 2006. Microcracking in multipass weld metal of Alloy 690. Part 3: Prevention of microcracking in reheated weld metal by addition of La to filler metal. Science and Technology of Welding and Joining 11(4): 471-479. Nishimoto, K., Saida, K., Okauchi, H., and Ohta, K. 2006. Microcracking in multipass weld metal of Alloy 690. Part 3: Prevention of microcracking in reheated weld metal by addition of La to filler metal. Science and Technology of Welding and Joining 11(4): 471-479.
7.
Zurück zum Zitat Nishimoto, K., Mori, H., and Hongoh, S. 1999. Effect of sulfur and thermal cycles on reheat cracking susceptibility in multipass weld metal of Fe - 36% Ni alloy, International Institute of Welding, IIW Doc. IX - 1934 - 99. Nishimoto, K., Mori, H., and Hongoh, S. 1999. Effect of sulfur and thermal cycles on reheat cracking susceptibility in multipass weld metal of Fe - 36% Ni alloy, International Institute of Welding, IIW Doc. IX - 1934 - 99.
8.
Zurück zum Zitat Dupont, J. N., Lippold, J. C., Kiser, S. D. 2009. Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons Inc., 128-143. Dupont, J. N., Lippold, J. C., Kiser, S. D. 2009. Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons Inc., 128-143.
9.
Zurück zum Zitat Collins, M. G. and Lippold, J. C. 2003. An investigation of ductility – dip cracking in nickel - based filler metals — Part I , Welding Journal , 82 ( 10 ): 288s – 295s . Collins, M. G. and Lippold, J. C. 2003. An investigation of ductility – dip cracking in nickel - based filler metals — Part I , Welding Journal , 82 ( 10 ): 288s – 295s .
10.
Zurück zum Zitat Nissley, N. 2006. Intermediate temperature grain boundary embrittlement in Ni -base weld metal. PhD Dissertation, The Ohio State University. Nissley, N. 2006. Intermediate temperature grain boundary embrittlement in Ni -base weld metal. PhD Dissertation, The Ohio State University.
11.
Zurück zum Zitat McCracken, S. L., Smith, R. E., Evaluation of Filler Metal 52M (ERNiCrFe-7A) Hot Cracking When Welding on Cast Austenitic Stainless Steel Base Materials, Proc. ASME PVP Conf., July 17-21, 2011, Baltimore, MD, Paper No. PVP2011-57703. McCracken, S. L., Smith, R. E., Evaluation of Filler Metal 52M (ERNiCrFe-7A) Hot Cracking When Welding on Cast Austenitic Stainless Steel Base Materials, Proc. ASME PVP Conf., July 17-21, 2011, Baltimore, MD, Paper No. PVP2011-57703.
12.
Zurück zum Zitat McCracken, S. L., Tatman, J. K., Influence of Austenitic Stainless Steel Base Metals on Hot Cracking Susceptibility of High Chromium Nickel-Base Filler Metals, Proc. ASME PVP Conf., July 15-19, 2012, Toronto, Ontario, Canada, Paper No. PVP2013-78614. McCracken, S. L., Tatman, J. K., Influence of Austenitic Stainless Steel Base Metals on Hot Cracking Susceptibility of High Chromium Nickel-Base Filler Metals, Proc. ASME PVP Conf., July 15-19, 2012, Toronto, Ontario, Canada, Paper No. PVP2013-78614.
13.
Zurück zum Zitat McCracken, S. L., Review of Thermo-Mechanical Testing and Micro- Characterization Studies of Nickel-Base Alloy 52 Weld Filler Metal for Susceptibility to Ductility-Dip Cracking, Proc. ASME IMECE Conf., November 15-21, 2003, Washington D.C., Paper No. IMECE2003-43342. McCracken, S. L., Review of Thermo-Mechanical Testing and Micro- Characterization Studies of Nickel-Base Alloy 52 Weld Filler Metal for Susceptibility to Ductility-Dip Cracking, Proc. ASME IMECE Conf., November 15-21, 2003, Washington D.C., Paper No. IMECE2003-43342.
14.
Zurück zum Zitat Chabenat, A., Thomas, A., Waskey, D. Hot Cracking Susceptibility of 30% Cr Alloy Filler Metal in GTAW Deposits, Welding & Repair Technology for Power Plants 6th International EPRI Conference, June 2004, Sandestin, Florida Chabenat, A., Thomas, A., Waskey, D. Hot Cracking Susceptibility of 30% Cr Alloy Filler Metal in GTAW Deposits, Welding & Repair Technology for Power Plants 6th International EPRI Conference, June 2004, Sandestin, Florida
15.
Zurück zum Zitat Brown, C.M., Hicks, T.G., Tatman, J. K. June 2010, Fatigue, Fracture Toughness, and Weldability Characteristics of Three Nickel-Chromium-Iron Alloy Welding Products, EPRI WRT Conference. Brown, C.M., Hicks, T.G., Tatman, J. K. June 2010, Fatigue, Fracture Toughness, and Weldability Characteristics of Three Nickel-Chromium-Iron Alloy Welding Products, EPRI WRT Conference.
16.
Zurück zum Zitat Goldak, J., Chakravarti, A., and Bibby, M. 1985. A double ellipsoid finite element model for welding heat sources, IIW Document Number 212-603-85. Goldak, J., Chakravarti, A., and Bibby, M. 1985. A double ellipsoid finite element model for welding heat sources, IIW Document Number 212-603-85.
17.
Zurück zum Zitat McCracken, S. L., Smith, R. E. Hot Cracking Phenomena in Welds III, 2011, pp. 333-352. McCracken, S. L., Smith, R. E. Hot Cracking Phenomena in Welds III, 2011, pp. 333-352.
18.
Zurück zum Zitat Welding and Repair Technology Center: Measures to Minimize 52M Hot Cracking on Stainless Steel Base Materials. EPRI, Palo Alto, CA: 2012. 1025167 Welding and Repair Technology Center: Measures to Minimize 52M Hot Cracking on Stainless Steel Base Materials. EPRI, Palo Alto, CA: 2012. 1025167
19.
Zurück zum Zitat Tatman, J. K., McCracken, S. L., and Hicks, T. G., Development of New Weld Heat Input and Dilution Equations for Gas Tungsten Arc Welding – Part 1, Proc. ASME PVP Conf., July 14-18, 2013, Paris, France, Paper No. PVP2013-97358. Tatman, J. K., McCracken, S. L., and Hicks, T. G., Development of New Weld Heat Input and Dilution Equations for Gas Tungsten Arc Welding – Part 1, Proc. ASME PVP Conf., July 14-18, 2013, Paris, France, Paper No. PVP2013-97358.
20.
Zurück zum Zitat Glickstein, S. S. and Friedman, E. June 1981. Technical Note: Effect of Weld Pool Configuration on Heat-Affected Zone Shape, Welding Journal: 110s – 112s. Glickstein, S. S. and Friedman, E. June 1981. Technical Note: Effect of Weld Pool Configuration on Heat-Affected Zone Shape, Welding Journal: 110s – 112s.
21.
Zurück zum Zitat Nissley, N. E., and Lippold, J. C. “Ductility-Dip Cracking Susceptibility of Nickel-Based Weld Metals: Part 2—Microstructural Characterization.” Welding Journal 88.6 (2009): 131s-140s. Nissley, N. E., and Lippold, J. C. “Ductility-Dip Cracking Susceptibility of Nickel-Based Weld Metals: Part 2—Microstructural Characterization.” Welding Journal 88.6 (2009): 131s-140s.
Metadaten
Titel
Prediction of Ductility-Dip Cracking in Narrow Groove Welds Using Computer Simulation of Strain Accumulation
verfasst von
Steven L. McCracken
Jonathan K. Tatman
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-28434-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.