Zum Inhalt

Prediction of Human Development from Environmental Indicators

  • 08.07.2017
Erschienen in:

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Sustainable Development Goals (SDG) list the objectives and targets that should be addressed to solve the global issues regarding sustainable development. They encompass the social, economic and environmental dimensions and search for solutions that are able not only to monitor but also to control the operational indicators attributed to each objective. It is expected that many of these indicators are associated to each other and the accurate understanding of these correlations allows to build predictive statistical models that can improve the monitoring and controlling of variables. It would increase the rate of success in achieving the SDG. This study tested a linear multivariate model able to predict the human development index based on environmental variables which are related to SDG 3 (health), 4 (education), 8 (sustainable economic growth and decent work) and 15 (protect, restore and promote sustainable use of terrestrial ecosystems). We fitted the models using the Linear Discriminant Analysis and Best Subset Selection applied to a Linear Multivariate Regression. The model predictive ability was assessed by R2 and cross-validation (CV). The results showed that exposure to unsafe sanitation, access to drinking water, tree cover loss, unsafe water quality, wastewater treatment level, and household air pollution are excellent predictors of human development index of a population, with R2 = 0.94 and 10-fold CV Mean Squared Error equal to 0.0014. This tool can help stakeholders to monitor and control indicators attributed to good health and well-being, quality education, clean water and sanitation, decent work and economic growth, sustainable cities and communities and life on land sustainable development goals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Titel
Prediction of Human Development from Environmental Indicators
Verfasst von
Salvador Boccaletti Ramos
José de Paula Silva
Cláudia Alexandra Bolela
Mônica de Andrade
Publikationsdatum
08.07.2017
Verlag
Springer Netherlands
Erschienen in
Social Indicators Research / Ausgabe 2/2018
Print ISSN: 0303-8300
Elektronische ISSN: 1573-0921
DOI
https://doi.org/10.1007/s11205-017-1693-2
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Bildnachweise
Schmalkalden/© Schmalkalden, NTT Data/© NTT Data, Verlagsgruppe Beltz/© Verlagsgruppe Beltz, EGYM Wellpass GmbH/© EGYM Wellpass GmbH, rku.it GmbH/© rku.it GmbH, zfm/© zfm, ibo Software GmbH/© ibo Software GmbH, Lorenz GmbH/© Lorenz GmbH, Axians Infoma GmbH/© Axians Infoma GmbH, genua GmbH/© genua GmbH, Prosoz Herten GmbH/© Prosoz Herten GmbH, Stormshield/© Stormshield, MACH AG/© MACH AG, OEDIV KG/© OEDIV KG, Rundstedt & Partner GmbH/© Rundstedt & Partner GmbH