Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2021

17.02.2021 | Original Article

Predictive coding models for pain perception

verfasst von: Yuru Song, Mingchen Yao, Helen Kemprecos, Aine Byrne, Zhengdong Xiao, Qiaosheng Zhang, Amrita Singh, Jing Wang, Zhe S. Chen

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats—two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out—thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aitchison, L., & Lengyel, M. (2017). With or without you: predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227.PubMedPubMedCentral Aitchison, L., & Lengyel, M. (2017). With or without you: predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227.PubMedPubMedCentral
Zurück zum Zitat Arnal, L. H., & Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16, 390–398.PubMed Arnal, L. H., & Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16, 390–398.PubMed
Zurück zum Zitat Bastos, A. M., Litvak, V., Moran, R., Bosman, C. A., Fries, P., & Friston, K. J. (2015). A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage, 108, 460–475.PubMedPubMedCentral Bastos, A. M., Litvak, V., Moran, R., Bosman, C. A., Fries, P., & Friston, K. J. (2015). A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage, 108, 460–475.PubMedPubMedCentral
Zurück zum Zitat Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711.PubMedPubMedCentral Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711.PubMedPubMedCentral
Zurück zum Zitat Bauer, M., Stenner, M. P., Friston, K. J., & Dolan, R. J. (2014). Attentional modulation of alpha/beta and gamma oscillations reflect functionally distinct processes. The Journal of Neuroscience, 34, 16117–16125.PubMedPubMedCentral Bauer, M., Stenner, M. P., Friston, K. J., & Dolan, R. J. (2014). Attentional modulation of alpha/beta and gamma oscillations reflect functionally distinct processes. The Journal of Neuroscience, 34, 16117–16125.PubMedPubMedCentral
Zurück zum Zitat Bennett, G. J. (2012). What is spontaneous pain and who has it? The Journal of Pain, 13, 921–929.PubMed Bennett, G. J. (2012). What is spontaneous pain and who has it? The Journal of Pain, 13, 921–929.PubMed
Zurück zum Zitat Bressler, S. L., & Richter, C. G. (2015). Interareal oscillatory synchronization in top-down neocortical processing. Current Opinion in Neurobiology, 31, 62–66.PubMed Bressler, S. L., & Richter, C. G. (2015). Interareal oscillatory synchronization in top-down neocortical processing. Current Opinion in Neurobiology, 31, 62–66.PubMed
Zurück zum Zitat Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society of London Series B. Biological Sciences, 356, 299–330.PubMed Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society of London Series B. Biological Sciences, 356, 299–330.PubMed
Zurück zum Zitat Buchel, C., Geuter, S., Sprenger, C., & Eippert, F. (2014). Placebo analgesia: a predictive coding perspective. Neuron, 81, 1223–1239.PubMed Buchel, C., Geuter, S., Sprenger, C., & Eippert, F. (2014). Placebo analgesia: a predictive coding perspective. Neuron, 81, 1223–1239.PubMed
Zurück zum Zitat Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews. Neuroscience, 14, 502–511.PubMedPubMedCentral Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews. Neuroscience, 14, 502–511.PubMedPubMedCentral
Zurück zum Zitat Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96, 7705–7709.PubMedPubMedCentral Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96, 7705–7709.PubMedPubMedCentral
Zurück zum Zitat Constantinople, C. M., & Bruno, R. M. (2013). Deep cortical layers are activated directly by thalamus. Science, 340, 1591–1594.PubMedPubMedCentral Constantinople, C. M., & Bruno, R. M. (2013). Deep cortical layers are activated directly by thalamus. Science, 340, 1591–1594.PubMedPubMedCentral
Zurück zum Zitat Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., et al. (2018). Scaling up cortical control inhibits pain. Cell Reports, 23, 1301–1313.PubMedPubMedCentral Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., et al. (2018). Scaling up cortical control inhibits pain. Cell Reports, 23, 1301–1313.PubMedPubMedCentral
Zurück zum Zitat Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12, 43–56.PubMed Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12, 43–56.PubMed
Zurück zum Zitat Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284.PubMedPubMedCentral Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284.PubMedPubMedCentral
Zurück zum Zitat Dirig, D. M., Salami, A., Rathbun, M. L., Ozaki, G. T., & Yash, T. L. (1997). Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli. Journal of Neuroscience Methods, 76, 183–191.PubMed Dirig, D. M., Salami, A., Rathbun, M. L., Ozaki, G. T., & Yash, T. L. (1997). Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli. Journal of Neuroscience Methods, 76, 183–191.PubMed
Zurück zum Zitat Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137–150.PubMed Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137–150.PubMed
Zurück zum Zitat Eto, K., Wake, H., Watanabe, M., Ishibashi, H., Noda, M., Yanagawa, Y., & Nabekura, J. (2011). Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. The Journal of Neuroscience, 31, 7631–7636.PubMedPubMedCentral Eto, K., Wake, H., Watanabe, M., Ishibashi, H., Noda, M., Yanagawa, Y., & Nabekura, J. (2011). Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. The Journal of Neuroscience, 31, 7631–7636.PubMedPubMedCentral
Zurück zum Zitat Friston, K. J., Bastos, A., Litvak, V., Stephan, E. K., Fries, P., & Moran, R. J. (2012). DCM for complex-valued data: cross-spectra, coherence and phase-delays. Neuroimage, 59, 439–455.PubMedPubMedCentral Friston, K. J., Bastos, A., Litvak, V., Stephan, E. K., Fries, P., & Moran, R. J. (2012). DCM for complex-valued data: cross-spectra, coherence and phase-delays. Neuroimage, 59, 439–455.PubMedPubMedCentral
Zurück zum Zitat Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations-what do they tell us? Current Opinion in Neurobiology, 31, 1–6.PubMedPubMedCentral Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations-what do they tell us? Current Opinion in Neurobiology, 31, 1–6.PubMedPubMedCentral
Zurück zum Zitat Friston, K. J., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211–1221. Friston, K. J., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211–1221.
Zurück zum Zitat Gross, J., Schnizler, A., Timmermann, L., & Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology, 5, e133.PubMedPubMedCentral Gross, J., Schnizler, A., Timmermann, L., & Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology, 5, e133.PubMedPubMedCentral
Zurück zum Zitat Guo, X., Zhang, Q., Singh, A., Wang, J., & Chen, Z. (2020). Granger causality analysis of rat cortical functional connectivity in pain. Journal of Neural Engineering, 17, 016050.PubMedPubMedCentral Guo, X., Zhang, Q., Singh, A., Wang, J., & Chen, Z. (2020). Granger causality analysis of rat cortical functional connectivity in pain. Journal of Neural Engineering, 17, 016050.PubMedPubMedCentral
Zurück zum Zitat Hardy, S. G. (1985). Analgesia elicited by prefrontal stimulation. Brain Research, 339, 281–284.PubMed Hardy, S. G. (1985). Analgesia elicited by prefrontal stimulation. Brain Research, 339, 281–284.PubMed
Zurück zum Zitat Hauck, M., Domnick, C., Lorenz, J., Gerloff, C., & Engel, A. K. (2015). Top-down and bottom-up modulation of pain-induced oscillations. Frontiers in Human Neuroscience, 9, 375.PubMedPubMedCentral Hauck, M., Domnick, C., Lorenz, J., Gerloff, C., & Engel, A. K. (2015). Top-down and bottom-up modulation of pain-induced oscillations. Frontiers in Human Neuroscience, 9, 375.PubMedPubMedCentral
Zurück zum Zitat Hoskin, R., Berzuini, C., Acosta-Kane, D., El-Deredy, W., Guo, H., & Talmi, D. (2019). Sensitivity to pain expectations: A Bayesian model of individual differences. Cognition, 182, 127–139.PubMed Hoskin, R., Berzuini, C., Acosta-Kane, D., El-Deredy, W., Guo, H., & Talmi, D. (2019). Sensitivity to pain expectations: A Bayesian model of individual differences. Cognition, 182, 127–139.PubMed
Zurück zum Zitat Hu, L., Peng, W., Valntini, E., Zhang, Z., & Hu, Y. (2013). Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. The Journal of Pain, 14, 89–99.PubMed Hu, L., Peng, W., Valntini, E., Zhang, Z., & Hu, Y. (2013). Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. The Journal of Pain, 14, 89–99.PubMed
Zurück zum Zitat Huang, Y., & Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 580–593.PubMed Huang, Y., & Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 580–593.PubMed
Zurück zum Zitat Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205, 1–12.PubMed Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205, 1–12.PubMed
Zurück zum Zitat Johansen, J. P., Fields, H. L., & Manning, B. H. (2001). The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proceedings. National Academy of Sciences. United States of America, 98, 8077–8082. Johansen, J. P., Fields, H. L., & Manning, B. H. (2001). The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proceedings. National Academy of Sciences. United States of America, 98, 8077–8082.
Zurück zum Zitat Keeley, S., Byrne, A., Fenton, A., & Rinzel, J. (2019). Firing rate models for gamma oscillations. Journal of Neurophysiology, 121, 2181–2190.PubMedPubMedCentral Keeley, S., Byrne, A., Fenton, A., & Rinzel, J. (2019). Firing rate models for gamma oscillations. Journal of Neurophysiology, 121, 2181–2190.PubMedPubMedCentral
Zurück zum Zitat Lea-Carnall, C. A., Montemurro, M. A., Trujillo-Barreto, N. J., Parkes, L. M., & El-Deredy, W. (2016). Cortical resonance frequencies emerge from network size and connectivity. PLoS Computational Biology, 12, 1–19. Lea-Carnall, C. A., Montemurro, M. A., Trujillo-Barreto, N. J., Parkes, L. M., & El-Deredy, W. (2016). Cortical resonance frequencies emerge from network size and connectivity. PLoS Computational Biology, 12, 1–19.
Zurück zum Zitat Lee, M., Manders, T. R., Eberle, S. E., Su, C., & D’amour, J., Yang, R., Lin, H. Y., Deisseroth, K., Froemke, R. C., Wang, J. (2015). Activation of corticostriatal circuitry relieves chronic neuropathic pain. The Journal of Neuroscience, 35, 5247–5259.PubMedPubMedCentral Lee, M., Manders, T. R., Eberle, S. E., Su, C., & D’amour, J., Yang, R., Lin, H. Y., Deisseroth, K., Froemke, R. C., Wang, J. (2015). Activation of corticostriatal circuitry relieves chronic neuropathic pain. The Journal of Neuroscience, 35, 5247–5259.PubMedPubMedCentral
Zurück zum Zitat Legrain, V., Iannetti, G. D., Plaghki, L., & Mouraux, A. (2011). The pain matrix reloaded: a salience detection system for the body. Progress in Neurobiology, 93, 111–124.PubMed Legrain, V., Iannetti, G. D., Plaghki, L., & Mouraux, A. (2011). The pain matrix reloaded: a salience detection system for the body. Progress in Neurobiology, 93, 111–124.PubMed
Zurück zum Zitat Martinez, E., Lin, H. H., Zhou, H., Dale, J., Liu, K., & Wang, J. (2017). Corticostriatal regulation of acute pain. Frontiers in Cellular Neuroscience, 11, 146.PubMedPubMedCentral Martinez, E., Lin, H. H., Zhou, H., Dale, J., Liu, K., & Wang, J. (2017). Corticostriatal regulation of acute pain. Frontiers in Cellular Neuroscience, 11, 146.PubMedPubMedCentral
Zurück zum Zitat Meijer, H. G. E., Eissa, T. L., Kiewiet, B., Neuman, J. F., Schevon, C. A., Emerson, R. G., et al. (2015). Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block. The Journal of Mathematical Neuroscience, 5, 7.PubMed Meijer, H. G. E., Eissa, T. L., Kiewiet, B., Neuman, J. F., Schevon, C. A., Emerson, R. G., et al. (2015). Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block. The Journal of Mathematical Neuroscience, 5, 7.PubMed
Zurück zum Zitat Morrison, I., Perini, I., & Dunham, J. (2013). Facets and mechanisms of adaptive pain behavior: predictive regulation and action. Frontiers in Human Neuroscience, 7, 755.PubMedPubMedCentral Morrison, I., Perini, I., & Dunham, J. (2013). Facets and mechanisms of adaptive pain behavior: predictive regulation and action. Frontiers in Human Neuroscience, 7, 755.PubMedPubMedCentral
Zurück zum Zitat Peng, W., Babiloni, C., Mao, Y., & Hu, Y. (2015). Subjective pain perception mediated by alpha rhythms. Biological Psychology, 109, 141–150.PubMed Peng, W., Babiloni, C., Mao, Y., & Hu, Y. (2015). Subjective pain perception mediated by alpha rhythms. Biological Psychology, 109, 141–150.PubMed
Zurück zum Zitat Peng, W., Xia, X., Yi, M., Huang, G., Zhang, Z., Iannetti, G., & Hu, L. (2018). Brain oscillations reflecting pain-related behavior in freely moving rats. PAIN, 159, 106–118.PubMed Peng, W., Xia, X., Yi, M., Huang, G., Zhang, Z., Iannetti, G., & Hu, L. (2018). Brain oscillations reflecting pain-related behavior in freely moving rats. PAIN, 159, 106–118.PubMed
Zurück zum Zitat Pinotsis, D., Robinson, P., Graben, P. B., & Friston, K. (2014). Neural masses and fields: modeling the dynamics of brain activity. Frontiers in Computational Neuroscience, 8, 149.PubMedPubMedCentral Pinotsis, D., Robinson, P., Graben, P. B., & Friston, K. (2014). Neural masses and fields: modeling the dynamics of brain activity. Frontiers in Computational Neuroscience, 8, 149.PubMedPubMedCentral
Zurück zum Zitat Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.PubMed Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.PubMed
Zurück zum Zitat Roberts, J. A., Gollo, L. L., Abeysuriya, R. G., Roberts, G., Mitchell, P. B., Woolrich, M. W., et al. (2019). Metastable brain waves. Nature Communications, 10, 1–17. Roberts, J. A., Gollo, L. L., Abeysuriya, R. G., Roberts, G., Mitchell, P. B., Woolrich, M. W., et al. (2019). Metastable brain waves. Nature Communications, 10, 1–17.
Zurück zum Zitat Schultz, E., May, E. S., Tiemann, L., Nickel, M. M., Witkovsky, V., Schmidt, P., et al. (2015). Prefrontal gamma oscillations encode tonic pain in humans. Cerebral Cortex, 25, 4407–4414. Schultz, E., May, E. S., Tiemann, L., Nickel, M. M., Witkovsky, V., Schmidt, P., et al. (2015). Prefrontal gamma oscillations encode tonic pain in humans. Cerebral Cortex, 25, 4407–4414.
Zurück zum Zitat Sedley, W., Gander, P. E., Kumar, S., Kovach, C. K., Oya, H., Kawasaki, H., et al. (2016). Neural signatures of perceptual inference. eLife, 5, e11476.PubMedPubMedCentral Sedley, W., Gander, P. E., Kumar, S., Kovach, C. K., Oya, H., Kawasaki, H., et al. (2016). Neural signatures of perceptual inference. eLife, 5, e11476.PubMedPubMedCentral
Zurück zum Zitat Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290, 213–242.PubMed Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290, 213–242.PubMed
Zurück zum Zitat Sesack, S. R., & Pickel, V. M. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. The Journal of Comparative Neurology, 320, 145–160.PubMed Sesack, S. R., & Pickel, V. M. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. The Journal of Comparative Neurology, 320, 145–160.PubMed
Zurück zum Zitat Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: predictive coding in the motor cortex. Trends in Neurosciences, 36, 706–716.PubMedPubMedCentral Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: predictive coding in the motor cortex. Trends in Neurosciences, 36, 706–716.PubMedPubMedCentral
Zurück zum Zitat Shusterman, V., & Troy, W. C. (2018). From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911. Shusterman, V., & Troy, W. C. (2018). From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911.
Zurück zum Zitat Singh, A., Patel, D., Hu, L., Li, A., Zhang, Q., Guo, X., et al. (2020). Mapping cortical integration of sensory and affective pain pathways. Current Biology, 30, 1703–1715.PubMed Singh, A., Patel, D., Hu, L., Li, A., Zhang, Q., Guo, X., et al. (2020). Mapping cortical integration of sensory and affective pain pathways. Current Biology, 30, 1703–1715.PubMed
Zurück zum Zitat Tabor, A., Thacker, M. A., Moseley, G. L., & Kording, K. P. (2017). Pain: A statistical account. PLoS Computational Biology, 13, 1–13. Tabor, A., Thacker, M. A., Moseley, G. L., & Kording, K. P. (2017). Pain: A statistical account. PLoS Computational Biology, 13, 1–13.
Zurück zum Zitat Talsma, D. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mind. Frontiers in Integrative Neuroscience, 9, 19.PubMedPubMedCentral Talsma, D. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mind. Frontiers in Integrative Neuroscience, 9, 19.PubMedPubMedCentral
Zurück zum Zitat Tan, L. L., Oswald, M. J., Heinl, C., et al. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature Communications, 10, 983.PubMedPubMedCentral Tan, L. L., Oswald, M. J., Heinl, C., et al. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature Communications, 10, 983.PubMedPubMedCentral
Zurück zum Zitat Tiemann, L., May, E. S., Postorino, M., Schulz, E., Nickel, M. M., Bingel, U., & Ploner, M. (2015). Differential neurophysiological correlates of bottom-up and top-down modulations of pain. PAIN, 156, 289–296.PubMed Tiemann, L., May, E. S., Postorino, M., Schulz, E., Nickel, M. M., Bingel, U., & Ploner, M. (2015). Differential neurophysiological correlates of bottom-up and top-down modulations of pain. PAIN, 156, 289–296.PubMed
Zurück zum Zitat Tu, Y., Zhang, Z., Tan, A., Peng, W., Hung, Y. S., Moayedi, M., et al. (2016). Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human Brain Mapping, 37, 501–514.PubMed Tu, Y., Zhang, Z., Tan, A., Peng, W., Hung, Y. S., Moayedi, M., et al. (2016). Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human Brain Mapping, 37, 501–514.PubMed
Zurück zum Zitat Urien, L., Xiao, Z., Bauer, E. P., Chen, Z., & Wang, J. (2018). Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Scientific Reports, 8, 8298.PubMedPubMedCentral Urien, L., Xiao, Z., Bauer, E. P., Chen, Z., & Wang, J. (2018). Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Scientific Reports, 8, 8298.PubMedPubMedCentral
Zurück zum Zitat van Pelt, S., Heil, L., Kwisthout, J., Ondobaka, S., van Rooij, I., & Bekkering, H. (2016). Beta and gamma-band activity reflect predictive coding in the processing of causal events. Social Cognitive and Affective Neuroscience, 11, 973–980.PubMedPubMedCentral van Pelt, S., Heil, L., Kwisthout, J., Ondobaka, S., van Rooij, I., & Bekkering, H. (2016). Beta and gamma-band activity reflect predictive coding in the processing of causal events. Social Cognitive and Affective Neuroscience, 11, 973–980.PubMedPubMedCentral
Zurück zum Zitat Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. PAIN, 154, 334–344.PubMed Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. PAIN, 154, 334–344.PubMed
Zurück zum Zitat Wagner, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: connecting context, learning and healthy. Nature Reviews. Neuroscience, 16, 403–418. Wagner, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: connecting context, learning and healthy. Nature Reviews. Neuroscience, 16, 403–418.
Zurück zum Zitat Wiech, K. (2016). Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science, 354, 584–587.PubMed Wiech, K. (2016). Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science, 354, 584–587.PubMed
Zurück zum Zitat Wilson, H. R., Blake, R., & Lee, S. H. (2001). Dynamics of traveling waves in visual perception. Nature, 412, 907–910.PubMed Wilson, H. R., Blake, R., & Lee, S. H. (2001). Dynamics of traveling waves in visual perception. Nature, 412, 907–910.PubMed
Zurück zum Zitat Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysics Journal, 12, 1–24. Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysics Journal, 12, 1–24.
Zurück zum Zitat Xiao, Z., Martinez, E., Kulkarni, P., Zhang, Q., Rosenberg, D., Hou, Q., et al. (2019). Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex. Frontiers in Cellular Neuroscience, 13, 165.PubMedPubMedCentral Xiao, Z., Martinez, E., Kulkarni, P., Zhang, Q., Rosenberg, D., Hou, Q., et al. (2019). Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex. Frontiers in Cellular Neuroscience, 13, 165.PubMedPubMedCentral
Zurück zum Zitat Zhang, C. H., Sohrabpour, A., Lu, Y., & He, B. (2016). Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation. Human Brain Mapping, 37, 2976–2991. Zhang, C. H., Sohrabpour, A., Lu, Y., & He, B. (2016). Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation. Human Brain Mapping, 37, 2976–2991.
Zurück zum Zitat Zhang, Z., Gadotti, V. M., Chen, L., Souza, I. A., Stemkowski, P. L., & Zamponi, G. W. (2015). Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Reports, 12, 752–759.PubMed Zhang, Z., Gadotti, V. M., Chen, L., Souza, I. A., Stemkowski, P. L., & Zamponi, G. W. (2015). Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Reports, 12, 752–759.PubMed
Zurück zum Zitat Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex–a direct and obligatory correlate of subjective pain intensity. The Journal of Neuroscience, 32, 7429–7438.PubMedPubMedCentral Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex–a direct and obligatory correlate of subjective pain intensity. The Journal of Neuroscience, 32, 7429–7438.PubMedPubMedCentral
Zurück zum Zitat Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., Dale, J., et al. (2018). Ketamine reduces hyperactivity of the anterior cingulate cortex to provide enduring relief of chronic pain. Nature Communications, 9, 3751.PubMedPubMedCentral Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., Dale, J., et al. (2018). Ketamine reduces hyperactivity of the anterior cingulate cortex to provide enduring relief of chronic pain. Nature Communications, 9, 3751.PubMedPubMedCentral
Zurück zum Zitat Geuter S, Boll S, Eippert F, Buchel C. (2017). Functional dissociation of stimulus intensity coding and predictive coding of pain in the insula. eLife 6: e24770. Geuter S, Boll S, Eippert F, Buchel C. (2017). Functional dissociation of stimulus intensity coding and predictive coding of pain in the insula. eLife 6: e24770.
Zurück zum Zitat Hayden B. Y, Platt M. L. (2009). Cingulate cortex. In Encyclopedia of Neuroscience Elsevier. Hayden B. Y, Platt M. L. (2009). Cingulate cortex. In Encyclopedia of Neuroscience Elsevier.
Zurück zum Zitat Vase L, Petersen G. L, Lund K. (2014). Placebo effects in idiopathic and neuropathic pain conditions. In Benedetti F, Enck P, Frisaldi E, Schedlowski M (eds). Placebo (pp. 121–136). Springer. Vase L, Petersen G. L, Lund K. (2014). Placebo effects in idiopathic and neuropathic pain conditions. In Benedetti F, Enck P, Frisaldi E, Schedlowski M (eds). Placebo (pp. 121–136). Springer.
Zurück zum Zitat Yu Y, Huber L, Yang J, et al. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science Advances 5:eaav9053. Yu Y, Huber L, Yang J, et al. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science Advances 5:eaav9053.
Zurück zum Zitat Zhang Q, Mander T. R, Tong A. P. S, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien L, Yang G, Chen Z, Wang J. (2017). Chronic pain induces generalized enhancement of aversion. eLife 6: e25302. Zhang Q, Mander T. R, Tong A. P. S, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien L, Yang G, Chen Z, Wang J. (2017). Chronic pain induces generalized enhancement of aversion. eLife 6: e25302.
Metadaten
Titel
Predictive coding models for pain perception
verfasst von
Yuru Song
Mingchen Yao
Helen Kemprecos
Aine Byrne
Zhengdong Xiao
Qiaosheng Zhang
Amrita Singh
Jing Wang
Zhe S. Chen
Publikationsdatum
17.02.2021
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2021
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-021-00780-x

Weitere Artikel der Ausgabe 2/2021

Journal of Computational Neuroscience 2/2021 Zur Ausgabe