Skip to main content

24.02.2024

Predictive search model of flocking for quadcopter swarm in the presence of static and dynamic obstacles

verfasst von: Giray Önür, Ali Emre Turgut, Erol Şahin

Erschienen in: Swarm Intelligence

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the main challenges in swarm robotics is to achieve robust and scalable flocking, such that large numbers of robots can move together in a coordinated and cohesive manner while avoiding obstacles or threats. Flocking models in swarm robotic systems typically use reactive behaviors, such as cohesion, alignment, and avoidance. The use of potential fields has enabled the derivation of reactive control laws using obstacles and neighboring robots as sources of force for flocking. However, reactive behaviors, especially when a multitude of them are simultaneously active, as in the case of flocking, are prone to cause collisions or inefficient motion within the flock due to its short-sighted approach. Approaches that aimed to generate smoother and optimum flocking, such as the use of model predictive control, would either require centralized coordination, or distributed coordination which requires low-latency and high-bandwidth communication requirements within the swarm as well as high computational resources. In this paper, we present a predictive search model that can generate smooth and safe flocking of robotic swarms in the presence of obstacles by taking into account the predicted states of other robots in a computationally efficient way. We tested the proposed model in environments with static and dynamic obstacles and compared its performance with a potential field flocking model in simulation. The results show that the predictive search model can generate smoother and faster flocking in swarm robotic systems in the presence of static and dynamic obstacles. Furthermore, we tested the predictive search model with different numbers of robots in environments with static obstacles in simulations and demonstrated that it is scalable to large swarm sizes. The performance of the predictive search model is also validated on a swarm of six quadcopters indoors in the presence of static and dynamic obstacles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albani, D., Manoni, T., Saska, M. & Ferrante, E. (2022). Distributed three dimensional flocking of autonomous drones. In 2022 international conference on robotics and automation (ICRA) (pp. 6904–6911). IEEE. Albani, D., Manoni, T., Saska, M. & Ferrante, E. (2022). Distributed three dimensional flocking of autonomous drones. In 2022 international conference on robotics and automation (ICRA) (pp. 6904–6911). IEEE.
Zurück zum Zitat Amorim, T., Nascimento, T., Petracek, P., De Masi, G., Ferrante, E., & Saska, M. (2021). Self-organized UAV flocking based on proximal control. In 2021 international conference on unmanned aircraft systems (ICUAS) (pp. 1374–1382). IEEE. Amorim, T., Nascimento, T., Petracek, P., De Masi, G., Ferrante, E., & Saska, M. (2021). Self-organized UAV flocking based on proximal control. In 2021 international conference on unmanned aircraft systems (ICUAS) (pp. 1374–1382). IEEE.
Zurück zum Zitat Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef
Zurück zum Zitat Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2020). Self-organization in biological systems. Princeton: Princeton University Press.CrossRef Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2020). Self-organization in biological systems. Princeton: Princeton University Press.CrossRef
Zurück zum Zitat Castaneda, M. A. P., Savage, J., Hernandez, A., & Cosío, F. A. (2008). Local autonomous robot navigation using potential fields. Motion planning. IntechOpen. Castaneda, M. A. P., Savage, J., Hernandez, A., & Cosío, F. A. (2008). Local autonomous robot navigation using potential fields. Motion planning. IntechOpen.
Zurück zum Zitat Çelikkanat, H., & Şahin, E. (2010). Steering self-organized robot flocks through externally guided individuals. Neural Computing and Applications, 19(6), 849–865.CrossRef Çelikkanat, H., & Şahin, E. (2010). Steering self-organized robot flocks through externally guided individuals. Neural Computing and Applications, 19(6), 849–865.CrossRef
Zurück zum Zitat Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1–11.ADSMathSciNetCrossRefPubMed Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1–11.ADSMathSciNetCrossRefPubMed
Zurück zum Zitat De Benedetti, M., D’Urso, F., Fortino, G., Messina, F., Pappalardo, G., & Santoro, C. (2017). A fault-tolerant self-organizing flocking approach for UAV aerial survey. Journal of Network and Computer Applications, 96, 14–30.CrossRef De Benedetti, M., D’Urso, F., Fortino, G., Messina, F., Pappalardo, G., & Santoro, C. (2017). A fault-tolerant self-organizing flocking approach for UAV aerial survey. Journal of Network and Computer Applications, 96, 14–30.CrossRef
Zurück zum Zitat Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J. L., Mondada, F., Floreano, D., et al. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2), 223–245.CrossRef Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J. L., Mondada, F., Floreano, D., et al. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2), 223–245.CrossRef
Zurück zum Zitat Ferrante, E., Turgut, A. E., Dorigo, M., & Huepe, C. (2013). Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Physical Review Letters, 111(26), 268302.ADSCrossRefPubMed Ferrante, E., Turgut, A. E., Dorigo, M., & Huepe, C. (2013). Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Physical Review Letters, 111(26), 268302.ADSCrossRefPubMed
Zurück zum Zitat Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 20(6), 460–477.CrossRef Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 20(6), 460–477.CrossRef
Zurück zum Zitat Hamann, H. (2018). Swarm robotics: A formal approach (Vol. 221). Springer.CrossRef Hamann, H. (2018). Swarm robotics: A formal approach (Vol. 221). Springer.CrossRef
Zurück zum Zitat Hemelrijk, C. K., & Hildenbrandt, H. (2008). Self-organized shape and frontal density of fish schools. Ethology, 114(3), 245–254.CrossRef Hemelrijk, C. K., & Hildenbrandt, H. (2008). Self-organized shape and frontal density of fish schools. Ethology, 114(3), 245–254.CrossRef
Zurück zum Zitat Naisbett-Jones, L. C., & Lohmann, K. J. (2022). Magnetoreception and magnetic navigation in fishes: A half century of discovery. Journal of Comparative Physiology A, 208(1), 19–40.CrossRef Naisbett-Jones, L. C., & Lohmann, K. J. (2022). Magnetoreception and magnetic navigation in fishes: A half century of discovery. Journal of Comparative Physiology A, 208(1), 19–40.CrossRef
Zurück zum Zitat Önür, G., Turgut, A.E. & Şahin, E. (2022). Mind the gap! predictive flocking of aerial robot swarm in cluttered environments. In International conference on swarm intelligence (pp. 171–182). Springer. Önür, G., Turgut, A.E. & Şahin, E. (2022). Mind the gap! predictive flocking of aerial robot swarm in cluttered environments. In International conference on swarm intelligence (pp. 171–182). Springer.
Zurück zum Zitat Preiss, J.A., Honig, W., Sukhatme, G.S. & Ayanian, N. (2017). Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3299–3304). IEEE. Preiss, J.A., Honig, W., Sukhatme, G.S. & Ayanian, N. (2017). Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3299–3304). IEEE.
Zurück zum Zitat Regmi, A., Sandoval, R. Byrne, R., Tanner, H. & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005, American control conference, 2005. (pp. 4917–4922). IEEE. Regmi, A., Sandoval, R. Byrne, R., Tanner, H. & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005, American control conference, 2005. (pp. 4917–4922). IEEE.
Zurück zum Zitat Reynolds, C.W. (1987). Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques (pp. 25–34). Reynolds, C.W. (1987). Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques (pp. 25–34).
Zurück zum Zitat Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Springer.CrossRef Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Springer.CrossRef
Zurück zum Zitat Sammut, C. (2010). Beam search. In Encyclopedia of machine learning (pp. 93). Springer. Sammut, C. (2010). Beam search. In Encyclopedia of machine learning (pp. 93). Springer.
Zurück zum Zitat Schilling, F., Soria, E., & Floreano, D. (2022). On the scalability of vision-based drone swarms in the presence of occlusions. IEEE Access, 10, 28133–28146.CrossRef Schilling, F., Soria, E., & Floreano, D. (2022). On the scalability of vision-based drone swarms in the presence of occlusions. IEEE Access, 10, 28133–28146.CrossRef
Zurück zum Zitat Simons, A. M. (2004). Many wrongs: the advantage of group navigation. Trends in Ecology & Evolution, 19(9), 453–455.CrossRef Simons, A. M. (2004). Many wrongs: the advantage of group navigation. Trends in Ecology & Evolution, 19(9), 453–455.CrossRef
Zurück zum Zitat Soria, E., Schiano, F., & Floreano, D. (2021). Distributed predictive drone swarms in cluttered environments. IEEE Robotics and Automation Letters, 7(1), 73–80.CrossRef Soria, E., Schiano, F., & Floreano, D. (2021). Distributed predictive drone swarms in cluttered environments. IEEE Robotics and Automation Letters, 7(1), 73–80.CrossRef
Zurück zum Zitat Soria, E., Schiano, F., & Floreano, D. (2021). Predictive control of aerial swarms in cluttered environments. Nature Machine Intelligence, 3(6), 545–554.CrossRef Soria, E., Schiano, F., & Floreano, D. (2021). Predictive control of aerial swarms in cluttered environments. Nature Machine Intelligence, 3(6), 545–554.CrossRef
Zurück zum Zitat Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2), 97–120.CrossRef Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2), 97–120.CrossRef
Zurück zum Zitat Van Havermaet, S., Simoens, P., & Khaluf, Y. (2022). An adaptive metric model for collective motion structures in dynamic environments. In International conference on swarm intelligence (pp. 257–265). Springer. Van Havermaet, S., Simoens, P., & Khaluf, Y. (2022). An adaptive metric model for collective motion structures in dynamic environments. In International conference on swarm intelligence (pp. 257–265). Springer.
Zurück zum Zitat Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., & Vicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), eaat3536.CrossRefPubMed Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., & Vicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), eaat3536.CrossRefPubMed
Zurück zum Zitat Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T. & Vicsek, T. (2014). Outdoor flocking and formation flight with autonomous aerial robots. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 3866–3873). IEEE. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T. & Vicsek, T. (2014). Outdoor flocking and formation flight with autonomous aerial robots. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 3866–3873). IEEE.
Zurück zum Zitat Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.ADSCrossRef Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.ADSCrossRef
Metadaten
Titel
Predictive search model of flocking for quadcopter swarm in the presence of static and dynamic obstacles
verfasst von
Giray Önür
Ali Emre Turgut
Erol Şahin
Publikationsdatum
24.02.2024
Verlag
Springer US
Erschienen in
Swarm Intelligence
Print ISSN: 1935-3812
Elektronische ISSN: 1935-3820
DOI
https://doi.org/10.1007/s11721-024-00234-x

Premium Partner