Skip to main content
Erschienen in: Mathematics and Financial Economics 2/2021

07.09.2020

Preferences over rich sets of random variables: on the incompatibility of convexity and semicontinuity in measure

verfasst von: Alexander Zimper, Hirbod Assa

Erschienen in: Mathematics and Financial Economics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper considers a decision maker whose preferences are locally upper- or/and lower-semicontinuous in measure. We introduce the notion of a rich set which encompasses any standard vector space of random variables but also much smaller sets containing only random variables with at most two different outcomes in their support. Whenever preferences are complete on a rich set of random variables, lower- (resp. upper-) semicontinuity in measure becomes incompatible with convexity of strictly better (resp. worse) sets. We discuss implications for utility representations and risk-measures. In particular, we show that the value-at-risk criterion violates convexity exactly because it is lower-semicontinuous in measure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Of course, continuity concepts are not directly testable through finitely many observations of choice behavior. Violations of convexity alone—as, e.g., expressed by the popularity of the value-at-risk criterion—cannot prove that these decision makers’ preferences are continuous in measure. We come back to this point when we discuss the behavioral meaning of continuity.
 
2
For a general class of utility representations with convex strictly better sets—including the variational preferences of Maccheroni et al. [27]—see Cerreira-Vioglio et al. [10].
 
3
For references to the economic literature which uses subjective belief data from the HRS or/and the SCF, see, e.g., Groneck, Ludwig, and Zimper [25].
 
4
A connected topological space is characterized by the property that only the empty set and the universal set are simultaneously open and closed (cf. Chapter 1.11.1 in Bourbaki [9]). Whereas some of the spaces considered in this paper are connected (e.g., the space of all random variables) others are not (e.g., the ‘small’ rich set of our Example 1 below).
 
5
Our preferred interpretation is that the decision maker is ‘aware’ of the random variables in L. At this point, we do not even require the decision maker to have complete preferences over all random variables in L.
 
6
The converse statement is, in general, not true. A violation of lower-semicontinuity of U at some \(Y\in L\) implies that the strictly better set \(S^{*}\left( c\right) =\left\{ Z\in L\mid c<U\left( Z\right) \right\} \) cannot be open for some \(c\in \mathbb {R}\) (cf., Theorem 1, p. 76 in Berge 1996). However, we do not always have that \(c=U\left( X\right) \) for some \(X\in \mathcal {F}\).
 
7
The distribution \(\mu _{Z}\) of random variable Z is the probability measure on \(\left( \mathbb {R},\mathcal {B}\left( \mathbb {R} \right) \right) \) such that
$$\begin{aligned} \mu _{Z}\left( A\right) =\mu \left( \left\{ \omega \in \Omega \mid Z\left( \omega \right) \in A\right\} \right) \text { for all }A\in \mathcal {B}\left( \mathbb {R}\right) \text {.} \end{aligned}$$
 
8
Point (i) is explained in detail in the present paper. For point (ii) see our analysis in Assa and Zimper [5] and references therein. For example, Savage’s [29] subjective expected utility axiomatization requires a bounded (Bernoulli) utility function as he considers complete preferences over the set of all random variables. Compare Wakker [37] who writes:
Ever since, the extension of Savage’s theorem to unbounded utility has been an open question, and with that the question ”what is wrong with Savage’s axioms?”. \(\left[ \ldots \right] \) I think that ”what is wrong with Savage’s axioms”, is primarily his requirement of completeness of the preference relation on the set of all (alternatives=) acts \(\left[ \ldots \right] \). (p. 448)
 
9
To see the formal relationship between the CEU- and the mutliple priors representation of ambiguity aversion, observe that for a convex \(\nu \)
$$\begin{aligned} \int _{\Omega }^{Choquet}u\left( Z\right) d\nu =\min _{\pi \in \mathcal {P} }\int _{\Omega }u\left( Z\right) d\pi \end{aligned}$$
where \(\mathcal {P}\) is defined as the core of \(\nu \).
 
10
Coherent risk measures, defined on some vector space \(L\subseteq L^{0}\), have to satisfy positive homogeneity and subadditivity which implies convexity.
 
11
Note that lower-semicontinuity of U becomes, by (8), upper-semicontinuity of \(\rho \).
 
12
In Assa and Zimper (2018) we had incorrectly claimed that value-at-risk preferences are continuous in measure without the qualifying condition (10).
 
13
We write \(\mathrm {VaR}_{\alpha }\left( Z\right) \) whenever (10) holds for Z.
 
14
Our formal definition of the average value-at-risk also appears in the literature as the definition of the “conditional value-at-risk” or of the “expected shortfall”. We follow here Föllmer and Schied ([21], p. 233) who argue that the notion of the average over the interval \(\left( 0,\beta \right) \) is more precise as it clarifies that the conditional distribution in question is the uniform distribution.
 
15
To see this, note that all converging sequences \(\left\{ Y_{n}\right\} \rightarrow Y\) which determine whether the strictly better set at X is open are, by (12), of the form
$$\begin{aligned} Y_{n}=\alpha \left( n\right) Y+\left( 1-\alpha \left( n\right) \right) Z^{\prime } \end{aligned}$$
such that \(\lim _{n\rightarrow \infty }\alpha \left( n\right) =1\).
 
Literatur
1.
Zurück zum Zitat Agner, E., Loewenstein, G.: Behavioral Economics. In: Mäki, Uskali (ed.) Handbook of the Philosophy of Science: Philosophy of Economics Chapter 13, pp. 641–690. Elsevier, Amsterdam (2012) Agner, E., Loewenstein, G.: Behavioral Economics. In: Mäki, Uskali (ed.) Handbook of the Philosophy of Science: Philosophy of Economics Chapter 13, pp. 641–690. Elsevier, Amsterdam (2012)
2.
Zurück zum Zitat Aliprantis, D.C., Border, K.: Infinite Dimensional Analysis, 2nd edn. Springer, Berlin (2006)MATH Aliprantis, D.C., Border, K.: Infinite Dimensional Analysis, 2nd edn. Springer, Berlin (2006)MATH
3.
Zurück zum Zitat Artzner, P., Delbaen, F., Eber, J., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997) Artzner, P., Delbaen, F., Eber, J., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)
4.
5.
Zurück zum Zitat Assa, H., Zimper, A.: Preferences over all random variables: incompatibility of convexity and continuity. J. Math. Econ. 75, 71–83 (2018)MathSciNetCrossRef Assa, H., Zimper, A.: Preferences over all random variables: incompatibility of convexity and continuity. J. Math. Econ. 75, 71–83 (2018)MathSciNetCrossRef
6.
Zurück zum Zitat Azevedo, E.M., Gottlieb, D.: Risk-neutral firms can extract unbounded profits from consumers with prospect theory preferences. J. Econ. Theory 147, 1291–1299 (2012)MathSciNetCrossRef Azevedo, E.M., Gottlieb, D.: Risk-neutral firms can extract unbounded profits from consumers with prospect theory preferences. J. Econ. Theory 147, 1291–1299 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Berge, C.: Topological Spaces. Dover Publications, New York. (An “unabridged and unaltered republication” of the original English publication from 1963.) (1997) Berge, C.: Topological Spaces. Dover Publications, New York. (An “unabridged and unaltered republication” of the original English publication from 1963.) (1997)
8.
Zurück zum Zitat Billingsley, P.: Probability and Measure. Wiley, New York (1995)MATH Billingsley, P.: Probability and Measure. Wiley, New York (1995)MATH
9.
Zurück zum Zitat Bourbaki, N.: Elements of Mathematics. General Topology. Chapters 1–4. Springer, Berlin (1989) Bourbaki, N.: Elements of Mathematics. General Topology. Chapters 1–4. Springer, Berlin (1989)
10.
Zurück zum Zitat Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Uncertainty averse preferences. J. Econ. Theory 146, 1275–1330 (2011)MathSciNetCrossRef Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Uncertainty averse preferences. J. Econ. Theory 146, 1275–1330 (2011)MathSciNetCrossRef
11.
Zurück zum Zitat Chateauneuf, A., Cohen, M., Meilijson, I.: More pessimism than greediness: a characterization of monotone risk aversion in the rank-dependent expected utility model. Econ. Theory 25, 649–667 (2005)MathSciNetCrossRef Chateauneuf, A., Cohen, M., Meilijson, I.: More pessimism than greediness: a characterization of monotone risk aversion in the rank-dependent expected utility model. Econ. Theory 25, 649–667 (2005)MathSciNetCrossRef
12.
Zurück zum Zitat Chew, S., Karni, E., Safra, Z.: Risk aversion in the theory of expected utility with rank dependent preferences. J. Econ. Theory 42, 370–381 (1987)CrossRef Chew, S., Karni, E., Safra, Z.: Risk aversion in the theory of expected utility with rank dependent preferences. J. Econ. Theory 42, 370–381 (1987)CrossRef
13.
Zurück zum Zitat Day, M.M.: The spaces \(L^{p}\) with \(0{\le }p{\le }1\). Bull. Am. Math. Soc. 46, 816–823 (1940) Day, M.M.: The spaces \(L^{p}\) with \(0{\le }p{\le }1\). Bull. Am. Math. Soc. 46, 816–823 (1940)
14.
Zurück zum Zitat Danan, E., Gajdos, T., Tallon, J.-M.: Harsanyi’s aggregation theorem with incomplete preferences. Am. Econ. J. Microecon. 7, 61–69 (2015)CrossRef Danan, E., Gajdos, T., Tallon, J.-M.: Harsanyi’s aggregation theorem with incomplete preferences. Am. Econ. J. Microecon. 7, 61–69 (2015)CrossRef
16.
Zurück zum Zitat Delbaen, F.: Coherent risk measures on general probability spaces. In: Advances in Finance and Stochastics, pp. 1-37. Springer, Berlin (2002) Delbaen, F.: Coherent risk measures on general probability spaces. In: Advances in Finance and Stochastics, pp. 1-37. Springer, Berlin (2002)
17.
19.
Zurück zum Zitat Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)CrossRef Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)CrossRef
20.
Zurück zum Zitat Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)MathSciNetCrossRef Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)MathSciNetCrossRef
21.
Zurück zum Zitat Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 4th edn. Walter de Gruyter GmbH, Berlin (2016) Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 4th edn. Walter de Gruyter GmbH, Berlin (2016)
22.
23.
Zurück zum Zitat Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16, 65–88 (1987)CrossRef Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16, 65–88 (1987)CrossRef
24.
Zurück zum Zitat Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 141–153 (1989)CrossRef Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 141–153 (1989)CrossRef
25.
Zurück zum Zitat Groneck, M., Ludwig, A., Zimper, A.: A life-cycle model with ambiguous survival beliefs. J. Econ. Theory 162, 137–180 (2016)MathSciNetCrossRef Groneck, M., Ludwig, A., Zimper, A.: A life-cycle model with ambiguous survival beliefs. J. Econ. Theory 162, 137–180 (2016)MathSciNetCrossRef
27.
Zurück zum Zitat Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)MathSciNetCrossRef Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)MathSciNetCrossRef
28.
Zurück zum Zitat Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)MATH Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)MATH
29.
Zurück zum Zitat Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)MATH Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)MATH
30.
Zurück zum Zitat Samuelson, P.A.: A note on the pure theory of consumer’s behaviour. Economica 5, 61–71 (1938)CrossRef Samuelson, P.A.: A note on the pure theory of consumer’s behaviour. Economica 5, 61–71 (1938)CrossRef
31.
Zurück zum Zitat Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 39, 403–404 (1971)MathSciNetCrossRef Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 39, 403–404 (1971)MathSciNetCrossRef
32.
33.
Zurück zum Zitat Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)MathSciNetCrossRef Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)MathSciNetCrossRef
34.
Zurück zum Zitat Sen, A.: Quasi-transitivity, rational choice and collective decisions. Rev. Econ. Stud. 36, 381–393 (1969)CrossRef Sen, A.: Quasi-transitivity, rational choice and collective decisions. Rev. Econ. Stud. 36, 381–393 (1969)CrossRef
35.
Zurück zum Zitat Sonnenschein, H.: The relationship between transitive preference and the structure of the choice space. Econometrica 33, 624–634 (1965)CrossRef Sonnenschein, H.: The relationship between transitive preference and the structure of the choice space. Econometrica 33, 624–634 (1965)CrossRef
36.
Zurück zum Zitat Wakker, P.P.: The algebraic versus the topological approach to additive representations. J. Math. Psychol. 32, 421–435 (1988)MathSciNetCrossRef Wakker, P.P.: The algebraic versus the topological approach to additive representations. J. Math. Psychol. 32, 421–435 (1988)MathSciNetCrossRef
37.
Zurück zum Zitat Wakker, P.P.: Unbounded utility for Savage’s “Foundations of Statistics” and other models. Math. Oper. Res. 18, 446–485 (1993) Wakker, P.P.: Unbounded utility for Savage’s “Foundations of Statistics” and other models. Math. Oper. Res. 18, 446–485 (1993)
38.
Zurück zum Zitat Wakker, P.P.: Prospect Theory for Risk and Ambiguity. Cambridge University Press, Oxford (2010)CrossRef Wakker, P.P.: Prospect Theory for Risk and Ambiguity. Cambridge University Press, Oxford (2010)CrossRef
Metadaten
Titel
Preferences over rich sets of random variables: on the incompatibility of convexity and semicontinuity in measure
verfasst von
Alexander Zimper
Hirbod Assa
Publikationsdatum
07.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Mathematics and Financial Economics / Ausgabe 2/2021
Print ISSN: 1862-9679
Elektronische ISSN: 1862-9660
DOI
https://doi.org/10.1007/s11579-020-00280-z

Weitere Artikel der Ausgabe 2/2021

Mathematics and Financial Economics 2/2021 Zur Ausgabe