Skip to main content
Erschienen in: Journal of Nanoparticle Research 9/2013

01.09.2013 | Research Paper

Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability

verfasst von: Rajesh Kumar, Rajesh Kumar Singh, Pawan Kumar Dubey, Pradip Kumar, Radhey Shyam Tiwari, Il-Kwon Oh

Erschienen in: Journal of Nanoparticle Research | Ausgabe 9/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a simple and cost-effective method to produce high-quality few-layer graphene (FLG) sheets (~4 layers) have been achieved by the direct current arc discharge under argon atmosphere, using pure graphite rods as the electrodes. Ar was used as a buffer gas with pure graphite rods as anode and cathode electrodes. We explored the suitable conditions for producing FLG by changing the Ar gas pressure inside the arcing chamber. This method has several advantages over the previous methods to produce graphene for research applications. No toxic and hazardous intercalant was used for producing FLG in this process. The optimum Ar pressure was 500 Torr, for producing minimum number of FLG and this also shows the good thermal stability. The FLG product so obtained has been characterized by X-ray diffraction, scanning and electron microscopy, Raman and Fourier transform infrared spectroscopy. Thermal stabilities of FLG were determined by thermal gravimetric analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393CrossRef Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393CrossRef
Zurück zum Zitat Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5(10):1616–1636CrossRef Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5(10):1616–1636CrossRef
Zurück zum Zitat Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef
Zurück zum Zitat Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493CrossRef Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493CrossRef
Zurück zum Zitat Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131(29):9908–9909CrossRef Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131(29):9908–9909CrossRef
Zurück zum Zitat Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano 4(1):30–33CrossRef Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano 4(1):30–33CrossRef
Zurück zum Zitat Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef
Zurück zum Zitat Dhakate SR, Chauhan N, Sharma S, Mathur RB (2011) The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49(13):4170–4178CrossRef Dhakate SR, Chauhan N, Sharma S, Mathur RB (2011) The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49(13):4170–4178CrossRef
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
Zurück zum Zitat Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W, Kang F, Wu D (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19(21):3367–3369CrossRef Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W, Kang F, Wu D (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19(21):3367–3369CrossRef
Zurück zum Zitat Guan L, Li J (2009) Transforming carbon nanotubes to few-layer graphene with the assistance of encapsulated ferrocene. J Phys Chem C 113(18):7481–7483CrossRef Guan L, Li J (2009) Transforming carbon nanotubes to few-layer graphene with the assistance of encapsulated ferrocene. J Phys Chem C 113(18):7481–7483CrossRef
Zurück zum Zitat Gupta V (2010) Graphene as intermediate phase in fullerene and carbon nanotube growth: a Young–Laplace surface-tension model. Appl Phys Lett 97(18):181910–181913CrossRef Gupta V (2010) Graphene as intermediate phase in fullerene and carbon nanotube growth: a Young–Laplace surface-tension model. Appl Phys Lett 97(18):181910–181913CrossRef
Zurück zum Zitat Hass J, Feng R, Li T, Li X, Zong Z, de Heer WA, First PN, Conrad EH, Jeffrey CA, Berger C (2006) Highly ordered graphene for two dimensional electronics. Appl Phys Lett 89(14):143103–143106CrossRef Hass J, Feng R, Li T, Li X, Zong Z, de Heer WA, First PN, Conrad EH, Jeffrey CA, Berger C (2006) Highly ordered graphene for two dimensional electronics. Appl Phys Lett 89(14):143103–143106CrossRef
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano 3(9):563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano 3(9):563–568CrossRef
Zurück zum Zitat Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRef Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRef
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRef Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRef
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef
Zurück zum Zitat Kim YA, Muramatsu H, Hayashi T, Endo M (2012b) Catalytic metal-free formation of multi-walled carbon nanotubes in atmospheric arc discharge. Carbon 50(12):4588–4595CrossRef Kim YA, Muramatsu H, Hayashi T, Endo M (2012b) Catalytic metal-free formation of multi-walled carbon nanotubes in atmospheric arc discharge. Carbon 50(12):4588–4595CrossRef
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef
Zurück zum Zitat Kumar R, Singh RK, Singh J, Tiwari RS, Srivastava ON (2012) Synthesis, characterization and optical properties of graphene sheets-ZnO multipod nanocomposites. J Alloys Compd 526:129–134CrossRef Kumar R, Singh RK, Singh J, Tiwari RS, Srivastava ON (2012) Synthesis, characterization and optical properties of graphene sheets-ZnO multipod nanocomposites. J Alloys Compd 526:129–134CrossRef
Zurück zum Zitat Kumar R, Singh R, Ghosh AK, Sen R, Srivastava SK, Tiwari RS, Srivastava ON (2013) Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst. J Nanopart Res 15(1):1–11CrossRef Kumar R, Singh R, Ghosh AK, Sen R, Srivastava SK, Tiwari RS, Srivastava ON (2013) Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst. J Nanopart Res 15(1):1–11CrossRef
Zurück zum Zitat Levchenko I, Volotskova O, Shashurin A, Raitses Y, Ostrikov K, Keidar M (2010) The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon 48(15):4570–4574CrossRef Levchenko I, Volotskova O, Shashurin A, Raitses Y, Ostrikov K, Keidar M (2010) The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon 48(15):4570–4574CrossRef
Zurück zum Zitat Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259CrossRef Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259CrossRef
Zurück zum Zitat Li Y-L, Kuan C-F, Chen C-H, Kuan H-C, Yip M-C, Chiu S-L, Chiang C-L (2012a) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134(2–3):677–685CrossRef Li Y-L, Kuan C-F, Chen C-H, Kuan H-C, Yip M-C, Chiu S-L, Chiang C-L (2012a) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134(2–3):677–685CrossRef
Zurück zum Zitat Li ZP, Liu ZX, Zhu KN, Li Z, Liu BH (2012b) Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium. J Power Sources 219:163–171CrossRef Li ZP, Liu ZX, Zhu KN, Li Z, Liu BH (2012b) Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium. J Power Sources 219:163–171CrossRef
Zurück zum Zitat Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef
Zurück zum Zitat Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo GV, Vanhulsel A, Haesendonck CV (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30):305604CrossRef Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo GV, Vanhulsel A, Haesendonck CV (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30):305604CrossRef
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005a) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005a) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005b) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005b) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef
Zurück zum Zitat Parvizi RF, Teweldebrhan D, Ghosh S, Calizo I, Balandin AA, Zhu H, Abbaschian R (2008) Properties of graphene produced by the high pressure-high temperature growth process. Micro Nano Lett IET 3(1):29–34CrossRef Parvizi RF, Teweldebrhan D, Ghosh S, Calizo I, Balandin AA, Zhu H, Abbaschian R (2008) Properties of graphene produced by the high pressure-high temperature growth process. Micro Nano Lett IET 3(1):29–34CrossRef
Zurück zum Zitat Qiu J, Chen G, Li Z, Zhao Z (2010) Preparation of double-walled carbon nanotubes from fullerene waste soot by arc-discharge. Carbon 48(4):1312–1315CrossRef Qiu J, Chen G, Li Z, Zhao Z (2010) Preparation of double-walled carbon nanotubes from fullerene waste soot by arc-discharge. Carbon 48(4):1312–1315CrossRef
Zurück zum Zitat Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond Ser A 362(1824):2271–2288CrossRef Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond Ser A 362(1824):2271–2288CrossRef
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
Zurück zum Zitat Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef
Zurück zum Zitat Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25(20):12030–12033CrossRef Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25(20):12030–12033CrossRef
Zurück zum Zitat Shen B, Chen J, Yan X, Xue Q (2012a) Synthesis of fluorine-doped multi-layered graphene sheets by arc discharge. RSC Adv 2:6761–6764CrossRef Shen B, Chen J, Yan X, Xue Q (2012a) Synthesis of fluorine-doped multi-layered graphene sheets by arc discharge. RSC Adv 2:6761–6764CrossRef
Zurück zum Zitat Shen B, Ding J, Yan X, Feng W, Li J, Xue Q (2012b) Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Appl Surf Sci 258(10):4523–4531CrossRef Shen B, Ding J, Yan X, Feng W, Li J, Xue Q (2012b) Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Appl Surf Sci 258(10):4523–4531CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
Zurück zum Zitat Su C-Y, Lu A-Y, Wu C-Y, Li Y-T, Liu K-K, Zhang W, Lin S-Y, Juang Z-Y, Zhong Y-L, Chen F-R, Li L-J (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11(9):3612–3616CrossRef Su C-Y, Lu A-Y, Wu C-Y, Li Y-T, Liu K-K, Zhang W, Lin S-Y, Juang Z-Y, Zhong Y-L, Chen F-R, Li L-J (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11(9):3612–3616CrossRef
Zurück zum Zitat Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18(13):1517–1523CrossRef Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18(13):1517–1523CrossRef
Zurück zum Zitat Vadahanambi S, Jung J-H, Kumar R, Kim H-J, Oh I-K (2013) An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon 53:391–398CrossRef Vadahanambi S, Jung J-H, Kumar R, Kim H-J, Oh I-K (2013) An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon 53:391–398CrossRef
Zurück zum Zitat Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef
Zurück zum Zitat Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J (2009) Large-scale synthesis of few-layered graphene using CVD. Chem Vap Depos 15(1–3):53–56CrossRef Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J (2009) Large-scale synthesis of few-layered graphene using CVD. Chem Vap Depos 15(1–3):53–56CrossRef
Zurück zum Zitat Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef
Zurück zum Zitat Wu Y, Wang B, Ma Y, Huang Y, Li N, Zhang F, Chen Y (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3(9):661–669CrossRef Wu Y, Wang B, Ma Y, Huang Y, Li N, Zhang F, Chen Y (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3(9):661–669CrossRef
Zurück zum Zitat Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nano 4(8):505–509CrossRef Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nano 4(8):505–509CrossRef
Zurück zum Zitat Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282CrossRef Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282CrossRef
Zurück zum Zitat Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204CrossRef Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204CrossRef
Zurück zum Zitat Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47(14):3365–3368CrossRef Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47(14):3365–3368CrossRef
Metadaten
Titel
Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability
verfasst von
Rajesh Kumar
Rajesh Kumar Singh
Pawan Kumar Dubey
Pradip Kumar
Radhey Shyam Tiwari
Il-Kwon Oh
Publikationsdatum
01.09.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 9/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1847-3

Weitere Artikel der Ausgabe 9/2013

Journal of Nanoparticle Research 9/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.