1.
World Health Organization, et al.: Global report on drowning: preventing a leading killer. World Health Organization (2014)
2.
Syddansk Universitet, Statens Institut for Folkesundhed: Drukneddsfald i danmark 2001–2013. trygfonden.dk (2015)
3.
Wallace, E., Diffley, C.: CCTV: making it work. Police Scientific Development Branch of the Home Office (PSDB) Publication
14, 98 (1998)
5.
Eng, H.L., Toh, K.A., Kam, A.H., Wang, J., Yau, W.Y.: An automatic drowning detection surveillance system for challenging outdoor pool environments. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 532–539. IEEE (2003)
6.
Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl.
25, 245–262 (2014)
CrossRef
7.
Wong, W.K., Tan, P.N., Loo, C.K., Lim, W.S.: An effective surveillance system using thermal camera. In: International Conference on Signal Acquisition and Processing, ICSAP 2009, pp. 13–17. IEEE (2009)
8.
Conaire, Ó., C., O’Connor, N.E., Cooke, E., Smeaton, A.F.: Comparison of fusion methods for thermo-visual surveillance tracking. Institute of Electrical and Electronics Engineers (2006)
9.
Torabi, A., Massé, G., Bilodeau, G.A.: An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications. Comput. Vis. Image Underst.
116, 210–221 (2012)
CrossRef
10.
Wong, W.K., Hui, J.H., Loo, C.K., Lim, W.S.: Off-time swimming pool surveillance using thermal imaging system. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 366–371. IEEE (2011)
11.
Hikvision: Safety and reliable detection for critical infrastructure, Hikvision dual lens thermal cameras. Web (2015)
12.
Harney, R.C.: COMBAT SYSTEMS, vol. 1. Sensor Elements Part I. Sensor Functional Characteristics (2004)
13.
Vahora, S., Chauhan, N., Prajapati, N.: A robust method for moving object detection using modified statistical mean method. Int. J. Adv. Inf. Technol.
2, 65 (2012)
CrossRef
14.
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, New York (2002)
CrossRef
15.
Szwoch, G., Szczodrak, M.: Detection of moving objects in images combined from video and thermal cameras. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2013. CCIS, vol. 368, pp. 262–272. Springer, Heidelberg (2013). doi:
10.1007/978-3-642-38559-9_23
CrossRef
16.
Gade, R., Jørgensen, A., Moeslund, T.B.: Occupancy analysis of sports arenas using thermal imaging. In: International Conference on Computer Vision Theory and Applications, pp. 277–283 (2012)
17.
Ericson, C.: Real-Time Collision Detection. CRC Press, Boca Raton (2004)
18.
Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics Q.
2, 83–97 (1955)
MathSciNetCrossRefMATH
19.
Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). doi:
10.1007/3-540-45103-X_50
CrossRef
20.
Cassidy, D., Holton, G., Rutherford, F.: Understanding Physics. Undergraduate Texts in Contemporary Physics. Springer, New York (2002)
CrossRefMATH
21.
Baldonado, M., Chang, C.C., Gravano, L., Paepcke, A.: The stanford digital library metadata architecture. Int. J. Digit. Libr.
1, 108–121 (1997)
CrossRef