Skip to main content

2020 | OriginalPaper | Buchkapitel

28. Production of Bio-Energy Using Biological Fuel Cell: Application to Electro-Dialysis for Recovery of Heavy Metal Traces from Treated Wastewater

verfasst von : Chahinez Yahiaoui, Mostefa Kameche, Christophe Innocent

Erschienen in: ICREEC 2019

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biological Fuel Cell (BFC) is a device that converts chemical energy into electric energy by using a biological catalyst such as enzyme, microbe, bacteria, etc.…, and a fuel. Although enzymes and microorganisms are highly efficient biocatalysts. The microbial desalination cell (MDC) a newly developed technology, integrated the Microbial Fuel Cell (MFC) process and electro-dialysis (ED) for wastewater treatment, water desalination and production of renewable energy. The cell developed herein, was composed of two compartments: anode and cathode compartments separated by a cation exchange membrane. The biocatalyst was either on the electrode and suspended in solution. The anode was in general a carbon-based electrode, while the cathode was stainless steel plate. The connection between the two electrodes via an electrical resistance allowed the flow of electrons from the anode to the cathode through the external circuit. This flow was compensated by the flow of ions through the internal circuit. Though it was relatively weak, the produced bio-energy was always enough to feed low energy devices. We have demonstrated herein the potential energy for the treatment of a wastewater. We have proved the degradation of organic matter using the bio-film, by measuring the abatement of Chemical Oxygen Demand (COD). Besides, we have eliminated the residual heavy metal traces using by electro-dialysis. In effect, we used the bio-energy produced by the (BFC) to feed the three-compartment electro-dialysis cell (EDC). Compared to electro-dialysis, our results proved the possibility to recover metal traces at approximately the same rate of abatement, using this novel biological device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Cheng, H. Liu, B.E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40, 2426–2432 (2006)CrossRef S. Cheng, H. Liu, B.E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40, 2426–2432 (2006)CrossRef
2.
Zurück zum Zitat A.E. Franks, K.P. Nevin, Microbial fuel cells. A current review. Energies 3, 899–919 (2010)CrossRef A.E. Franks, K.P. Nevin, Microbial fuel cells. A current review. Energies 3, 899–919 (2010)CrossRef
3.
Zurück zum Zitat B. Logan, S. Cheng, V. Watson, G. Estadt, Microbial fuel cell with non-Pt cathode catalysts. J. Power Sources 171, 275–281 (2007)CrossRef B. Logan, S. Cheng, V. Watson, G. Estadt, Microbial fuel cell with non-Pt cathode catalysts. J. Power Sources 171, 275–281 (2007)CrossRef
4.
Zurück zum Zitat U. Mardiana, C. Innocent, H. Jarrar, M. Cretin, Buchari, S. Gandasasmita, Electropolymerized neutral redox mediator for yeast fuel cell. Int. J. Electrochem. Sci. 10, 8886–8898 (2015) U. Mardiana, C. Innocent, H. Jarrar, M. Cretin, Buchari, S. Gandasasmita, Electropolymerized neutral redox mediator for yeast fuel cell. Int. J. Electrochem. Sci. 10, 8886–8898 (2015)
5.
Zurück zum Zitat U. Mardiana, C. Innocent, H. Jarrar, M. Cretin, Buchari, S. Gandasasmita, Yeast fuel cell: application for desalination, in IOP Conference Series: Materials Science and Engineering, p. 107012049 (2016) U. Mardiana, C. Innocent, H. Jarrar, M. Cretin, Buchari, S. Gandasasmita, Yeast fuel cell: application for desalination, in IOP Conference Series: Materials Science and Engineering, p. 107012049 (2016)
6.
Zurück zum Zitat M. Mehanna, T. Saito, J. Yan, M. Hickner, C. Xiaoxin, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 3(8), 1114–1120 (2010)CrossRef M. Mehanna, T. Saito, J. Yan, M. Hickner, C. Xiaoxin, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 3(8), 1114–1120 (2010)CrossRef
7.
Zurück zum Zitat R. Rossi, L. Setti, Effect of methylene blue on electron mediated microbial fuel cell by saccharomyces cerevisiae. Environ. Eng. Manag. J. 16(9), 2011–2018 (2016)CrossRef R. Rossi, L. Setti, Effect of methylene blue on electron mediated microbial fuel cell by saccharomyces cerevisiae. Environ. Eng. Manag. J. 16(9), 2011–2018 (2016)CrossRef
8.
Zurück zum Zitat S. Tingry, M. Cretin, C. Innocent, Enzymatic biofuel cells as electrical power source. L’Actualité Chimique No. 373 (2013) S. Tingry, M. Cretin, C. Innocent, Enzymatic biofuel cells as electrical power source. L’Actualité Chimique No. 373 (2013)
9.
Zurück zum Zitat K. Scott, E.H. Yu, M.M. Ghangrekar, B. Erable, N.M. Duteanu, Biological and microbial fuel cells, in Comprehensive Renewable Energy. Elsevier (2012) K. Scott, E.H. Yu, M.M. Ghangrekar, B. Erable, N.M. Duteanu, Biological and microbial fuel cells, in Comprehensive Renewable Energy. Elsevier (2012)
10.
Zurück zum Zitat N.A. Shehab, G.L. Amy, B.E. Logan, P.E. Saikaly, Enhanced water desalination efficiency in an air-cathode stacked microbial electrode ionization cell (SMEDIC). J. Membrane Sci. 469, 364–370 (2014)CrossRef N.A. Shehab, G.L. Amy, B.E. Logan, P.E. Saikaly, Enhanced water desalination efficiency in an air-cathode stacked microbial electrode ionization cell (SMEDIC). J. Membrane Sci. 469, 364–370 (2014)CrossRef
11.
Zurück zum Zitat L. Zhao, J. Brouwer, J. Naviaux, A. Hochbaum, Modeling of polarization losses of a microbial fuel cell, in Proceedings of the ASME 12th International Conference on Fuel Cell Science Engineering and Technology (2014) L. Zhao, J. Brouwer, J. Naviaux, A. Hochbaum, Modeling of polarization losses of a microbial fuel cell, in Proceedings of the ASME 12th International Conference on Fuel Cell Science Engineering and Technology (2014)
Metadaten
Titel
Production of Bio-Energy Using Biological Fuel Cell: Application to Electro-Dialysis for Recovery of Heavy Metal Traces from Treated Wastewater
verfasst von
Chahinez Yahiaoui
Mostefa Kameche
Christophe Innocent
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5444-5_28