Skip to main content

2018 | OriginalPaper | Buchkapitel

Production of Lithium-Ion Cathode Material for Automotive Batteries Using Melting Casting Process

verfasst von : Delin Li, Wojciech Kasprzak, Gregory S. Patience, Pierre Sauriol, Hernando Villazón-Amarís, Mickaël Dollé, Michel Gauthier, Steeve Rousselot, Majid Talebi-Esfandarani, Thomas Bibienne, Xueliang Sun, Yulong Liu, Guoxian Liang

Erschienen in: 9th International Symposium on High-Temperature Metallurgical Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the 1990s, LiFePO4 (LFP) was discovered as a cathode material for lithium ion batteries and was successfully used in the variety of devices such as power tools, E-bikes and grid accumulators. New challenges associated with use of lithium ion batteries for automotive applications demand higher performance and operating requirements, yet these requirements need to be achieved at affordable cost and without compromising vehicle safety. The advantages of LFP as a cathode material include thermal stability, limited environmental impact and potential of low cost as compared to the cathode chemistries containing cobalt. Currently, solid state and hydrothermal processes are used to synthesize LFP at the industrial scale. However, they require multiple, time-consuming steps and costly precursors. Recently, a melting-casting process to produce LFP cathode material was investigated. The motivation behind this new process is the great flexibility of raw materials including chemical makeup and particle size, and the use of lower cost, commodity chemicals, with the benefits of increased kinetics in the molten state and energy efficiencies leading to overall process cost savings. Also, if successful this process could represent a novel application of conventional casting. Melting lithium-, iron- and phosphorus-bearing precursors in near stoichiometric ratios and casting LFP material that forms around 1000 °C requires fewer processing steps and shorter reaction time. Initially, electric resistance furnaces were utilized to melt the precursors to synthesize LFP. In this investigation, induction furnace was utilized to significantly reduce the melting cycle time. Various precursors and process parameters were tested from small laboratory samples of less than 1 kg to pilot-scale casting of approximately 40 kg. Cast LFP samples were evaluated using SEM/EDX microscope, differential scanning calorimetry, thermal analysis, X-ray diffraction and battery assemblies in coin cells, and compared against commercial LFP product.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Czerwinski F, Kasprzak W, Sediako D, Emadi D, Chen D, Shaha S, Friedman J (2016) Development of high temperature aluminum alloys for automotive powertrain. Adv Mater Process 174(3):17–20 Czerwinski F, Kasprzak W, Sediako D, Emadi D, Chen D, Shaha S, Friedman J (2016) Development of high temperature aluminum alloys for automotive powertrain. Adv Mater Process 174(3):17–20
2.
Zurück zum Zitat Element Energy Ltd. (2012) Cost and performance of EV batteries. Report to Climate Committee Change, Cambridge, UK Element Energy Ltd. (2012) Cost and performance of EV batteries. Report to Climate Committee Change, Cambridge, UK
3.
Zurück zum Zitat Miller P (2015) Automotive lithium-ion batteries. Johnson Matthey Techno Revi 59(1):4–13 Miller P (2015) Automotive lithium-ion batteries. Johnson Matthey Techno Revi 59(1):4–13
4.
Zurück zum Zitat Devigne ML, Michot C, Rodrigues I, Liang G, Gauthier M (2010) Melt casting LiFePO4: II. Particle size reduction and electrochemical evaluation. J Electrochem Soc 157(4): A463–A468, 2010 Devigne ML, Michot C, Rodrigues I, Liang G, Gauthier M (2010) Melt casting LiFePO4: II. Particle size reduction and electrochemical evaluation. J Electrochem Soc 157(4): A463–A468, 2010
5.
Zurück zum Zitat Kasprzak W, Li D et al (2017) Induction melting to manufacture lithium-ion cathode material for automotive battery applications. Adv Mat Process Vols 175 In-print Kasprzak W, Li D et al (2017) Induction melting to manufacture lithium-ion cathode material for automotive battery applications. Adv Mat Process Vols 175 In-print
6.
Zurück zum Zitat Gauthier M, Michot M, Ravet N, Duchesneau M, Dufour J, Liang G, Wontcheu J, Gauthier I, Macneil D (2010) Melt casting LiFePO4: I. synthesis and characterization. J Electrochem Soc 157(4):A453–A462 Gauthier M, Michot M, Ravet N, Duchesneau M, Dufour J, Liang G, Wontcheu J, Gauthier I, Macneil D (2010) Melt casting LiFePO4: I. synthesis and characterization. J Electrochem Soc 157(4):A453–A462
7.
Zurück zum Zitat Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Liang G, Dollé M (2016) LiFePO4 synthesized via melt synthesis using low-cost iron precursors. J Solid State Electrochem 20(7):1821–1829 Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Liang G, Dollé M (2016) LiFePO4 synthesized via melt synthesis using low-cost iron precursors. J Solid State Electrochem 20(7):1821–1829
8.
Zurück zum Zitat Renard F (2014) 2020 cathode materials cost competition for large scale applications and promising LFP best-in-class performer in terms of price per kWh. In: OREBA 1.0, Montreal, QC, Canada Renard F (2014) 2020 cathode materials cost competition for large scale applications and promising LFP best-in-class performer in terms of price per kWh. In: OREBA 1.0, Montreal, QC, Canada
11.
Zurück zum Zitat Patience G (2014) Towards a low-cost melt-casting pathway for C-LiFePO4 Production. In: OREBA 1.0, Montreal, QC, Canada Patience G (2014) Towards a low-cost melt-casting pathway for C-LiFePO4 Production. In: OREBA 1.0, Montreal, QC, Canada
12.
Zurück zum Zitat Gauthier L, Gauthier M, Lavoie D, Michot C, Ravet N (2014) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom. US 8647778 B2 Gauthier L, Gauthier M, Lavoie D, Michot C, Ravet N (2014) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom. US 8647778 B2
13.
Zurück zum Zitat Patient G, Gauthier M (2013) Automotive partnership Canada project Patient G, Gauthier M (2013) Automotive partnership Canada project
14.
Zurück zum Zitat Gauthier M, Macneil D, Wontcheu J, Chartrand P, Liang G (2013) Process for preparing crystalline electrode materials and materials obtained therefrom. Patent No. WO 2013177671 A1 Gauthier M, Macneil D, Wontcheu J, Chartrand P, Liang G (2013) Process for preparing crystalline electrode materials and materials obtained therefrom. Patent No. WO 2013177671 A1
15.
Zurück zum Zitat Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Duttine M, Wattiaux A, Liu Y, Sun A, Liang G, Dollé M (2016) Control of the LiFePO4 electrochemical properties using low-cost iron precursor in a melt process. J Solid State Electrochem 20(12):3481–349 Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Duttine M, Wattiaux A, Liu Y, Sun A, Liang G, Dollé M (2016) Control of the LiFePO4 electrochemical properties using low-cost iron precursor in a melt process. J Solid State Electrochem 20(12):3481–349
Metadaten
Titel
Production of Lithium-Ion Cathode Material for Automotive Batteries Using Melting Casting Process
verfasst von
Delin Li
Wojciech Kasprzak
Gregory S. Patience
Pierre Sauriol
Hernando Villazón-Amarís
Mickaël Dollé
Michel Gauthier
Steeve Rousselot
Majid Talebi-Esfandarani
Thomas Bibienne
Xueliang Sun
Yulong Liu
Guoxian Liang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72138-5_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.