Skip to main content

2019 | OriginalPaper | Buchkapitel

Products Components: Alcohols

verfasst von : Henning Kuhz, Anja Kuenz, Ulf Prüße, Thomas Willke, Klaus-Dieter Vorlop

Erschienen in: Biorefineries

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alcohols (CnHn+2OH) are classified into primary, secondary, and tertiary alcohols, which can be branched or unbranched. They can also feature more than one OH-group (two OH-groups = diol; three OH-groups = triol). Presently, except for ethanol and sugar alcohols, they are mainly produced from fossil-based resources, such as petroleum, gas, and coal. Methanol and ethanol have the highest annual production volume accounting for 53 and 91 million tons/year, respectively. Most alcohols are used as fuels (e.g., ethanol), solvents (e.g., butanol), and chemical intermediates.
This chapter gives an overview of recent research on the production of short-chain unbranched alcohols (C1–C5), focusing in particular on propanediols (1,2- and 1,3-propanediol), butanols, and butanediols (1,4- and 2,3-butanediol). It also provides a short summary on biobased higher alcohols (>C5) including branched alcohols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H-J (2014) Methanol: the basic chemical and energy feedstock of the future. Asinger’s Vision Today. Springer-Verlag, Berlin. doi:10.1007/978-3-642-39709-7 CrossRef Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H-J (2014) Methanol: the basic chemical and energy feedstock of the future. Asinger’s Vision Today. Springer-Verlag, Berlin. doi:10.​1007/​978-3-642-39709-7 CrossRef
8.
Zurück zum Zitat Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24(12):1597–1605. doi:10.4014/jmb.1407.07070 CrossRefPubMed Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24(12):1597–1605. doi:10.​4014/​jmb.​1407.​07070 CrossRefPubMed
10.
Zurück zum Zitat Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1 Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1
11.
Zurück zum Zitat Blake WJ, Swartz JR (2014) Cell-free system for converting methane into fuel, pyruvate or isobutanol. WO 2014/100722 A1 Blake WJ, Swartz JR (2014) Cell-free system for converting methane into fuel, pyruvate or isobutanol. WO 2014/100722 A1
14.
Zurück zum Zitat Kiriukhin M, Tyurin M, Gak E (2014) UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO2/H2 blend fermentations. World J Microbiol Biotechnol 30(5):1559–1574. doi:10.1007/s11274-013-1579-7 CrossRefPubMed Kiriukhin M, Tyurin M, Gak E (2014) UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO2/H2 blend fermentations. World J Microbiol Biotechnol 30(5):1559–1574. doi:10.​1007/​s11274-013-1579-7 CrossRefPubMed
15.
Zurück zum Zitat Tyurin M, Kiriukhin M (2013) Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 29(9):1611–1623. doi:10.1007/s11274-013-1324-2 CrossRefPubMed Tyurin M, Kiriukhin M (2013) Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 29(9):1611–1623. doi:10.​1007/​s11274-013-1324-2 CrossRefPubMed
23.
Zurück zum Zitat Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefPubMed Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefPubMed
27.
28.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539. doi:10.1039/b922014c CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539. doi:10.​1039/​b922014c CrossRef
34.
Zurück zum Zitat Bender M (2013) Global aromatics supply – today and tomorrow. Paper presented at the Dgmk Conference: new technologies and alternative feedstocks in petrochemistry and refining, Dresden, October 9–11, 2013 Bender M (2013) Global aromatics supply – today and tomorrow. Paper presented at the Dgmk Conference: new technologies and alternative feedstocks in petrochemistry and refining, Dresden, October 9–11, 2013
37.
Zurück zum Zitat Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172 Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172
38.
Zurück zum Zitat Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy, vol. 2013. Article ID 690627. doi:10.1155/2013/690627 CrossRef Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy, vol. 2013. Article ID 690627. doi:10.​1155/​2013/​690627 CrossRef
40.
Zurück zum Zitat Weusthuis RA, Aarts JMMJG, Sanders JPM (2011) From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals? Biofuels Bioprod Biorefin 5(5):486–494. doi:10.1002/bbb.307 CrossRef Weusthuis RA, Aarts JMMJG, Sanders JPM (2011) From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals? Biofuels Bioprod Biorefin 5(5):486–494. doi:10.​1002/​bbb.​307 CrossRef
48.
Zurück zum Zitat Hayashi F, Iwamoto M (2013) Yttrium-modified ceria as a highly durable catalyst for the selective conversion of ethanol to propene and ethene. ACS Catal 3(1):14–17. doi:10.1021/cs3006956 CrossRef Hayashi F, Iwamoto M (2013) Yttrium-modified ceria as a highly durable catalyst for the selective conversion of ethanol to propene and ethene. ACS Catal 3(1):14–17. doi:10.​1021/​cs3006956 CrossRef
49.
Zurück zum Zitat Mizuno S, Kurosawa M, Tanaka M, Iwamoto M (2012) One-path and selective conversion of ethanol to propene on scandium-modified indium oxide catalysts. Chem Lett 41(9):892–894. doi:10.1246/cl.2012.892 CrossRef Mizuno S, Kurosawa M, Tanaka M, Iwamoto M (2012) One-path and selective conversion of ethanol to propene on scandium-modified indium oxide catalysts. Chem Lett 41(9):892–894. doi:10.​1246/​cl.​2012.​892 CrossRef
51.
Zurück zum Zitat Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CH, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. J Am Chem Soc 133(29):11096–11099. doi:10.1021/ja204235v CrossRefPubMed Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CH, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. J Am Chem Soc 133(29):11096–11099. doi:10.​1021/​ja204235v CrossRefPubMed
55.
57.
Zurück zum Zitat Ashley M (2014) Development of ethyl acetate process technology – a compandium of papers edited by Mike Ashley. Davy Process Technology Ashley M (2014) Development of ethyl acetate process technology – a compandium of papers edited by Mike Ashley. Davy Process Technology
58.
Zurück zum Zitat Colley SW, Fawcett CR, Rathmell C, Tuck M, Marshall W (2004) Process for the preparation of ethyl acetate. US 6809217 B1 Colley SW, Fawcett CR, Rathmell C, Tuck M, Marshall W (2004) Process for the preparation of ethyl acetate. US 6809217 B1
59.
Zurück zum Zitat Riittonen T, Toukoniitty E, Madnani DK, Leino A-R, Kordas K, Szabo M, Sapi A, Arve K, Wärnå J, Mikkola J-P (2012) One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity. Catalysts 2(4):68–84. doi:10.3390/catal2010068 CrossRef Riittonen T, Toukoniitty E, Madnani DK, Leino A-R, Kordas K, Szabo M, Sapi A, Arve K, Wärnå J, Mikkola J-P (2012) One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity. Catalysts 2(4):68–84. doi:10.​3390/​catal2010068 CrossRef
62.
Zurück zum Zitat Anonymous (2013) Global plantbottle use continues to grow. European Bioplastics Bulletin, vol 3. European Bioplastics Anonymous (2013) Global plantbottle use continues to grow. European Bioplastics Bulletin, vol 3. European Bioplastics
63.
Zurück zum Zitat Carus M, Baltus W, Carrez D, Kaeb H, Ravenstijn J, Zepnik S (2013) Bio-based polymers in the world. Nova-Institut GmbH, Hürth Carus M, Baltus W, Carrez D, Kaeb H, Ravenstijn J, Zepnik S (2013) Bio-based polymers in the world. Nova-Institut GmbH, Hürth
64.
Zurück zum Zitat Guzman Dd (2013) Toyota Tsusho’s bio-PET in bottled water. Green Chem Blog 2015 Guzman Dd (2013) Toyota Tsusho’s bio-PET in bottled water. Green Chem Blog 2015
68.
Zurück zum Zitat Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Factories 10:70. doi:10.1186/1475-2859-10-70 CrossRef Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Factories 10:70. doi:10.​1186/​1475-2859-10-70 CrossRef
69.
71.
Zurück zum Zitat Martin A, Armbruster U, Gandarias I, Arias PL (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – a critical review. Eur J Lipid Sci Technol 115(1):9–27. doi:10.1002/ejlt.201200207 CrossRef Martin A, Armbruster U, Gandarias I, Arias PL (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – a critical review. Eur J Lipid Sci Technol 115(1):9–27. doi:10.​1002/​ejlt.​201200207 CrossRef
75.
78.
Zurück zum Zitat Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13. doi:10.1039/b710561d CrossRef Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13. doi:10.​1039/​b710561d CrossRef
80.
Zurück zum Zitat Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. doi:10.1016/j.rser.2014.10.033 CrossRef Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. doi:10.​1016/​j.​rser.​2014.​10.​033 CrossRef
82.
83.
Zurück zum Zitat Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549. doi:10.1039/b707343g CrossRefPubMed Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549. doi:10.​1039/​b707343g CrossRefPubMed
84.
Zurück zum Zitat Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. ChemSusChem 6(8):1345–1347. doi:10.1002/cssc.201300196 CrossRefPubMed Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. ChemSusChem 6(8):1345–1347. doi:10.​1002/​cssc.​201300196 CrossRefPubMed
85.
86.
Zurück zum Zitat Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of Chemistry Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of Chemistry
88.
Zurück zum Zitat Sánchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of R(−)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9(7):449–454. doi:10.1007/BF01027450 CrossRef Sánchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of R(−)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9(7):449–454. doi:10.​1007/​BF01027450 CrossRef
89.
Zurück zum Zitat Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nat Biotechnol 4(7):651–654CrossRef Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nat Biotechnol 4(7):651–654CrossRef
90.
Zurück zum Zitat Voelker F, Dumon-Seignovert L, Soucaille P (2015) Mutant YQHD enzyme for the production of a biochemical by fermentation. US 8969053 B2 Voelker F, Dumon-Seignovert L, Soucaille P (2015) Mutant YQHD enzyme for the production of a biochemical by fermentation. US 8969053 B2
91.
Zurück zum Zitat Freund A (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Ber Deut Chem Ges Berlin 10:636–641 Freund A (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Ber Deut Chem Ges Berlin 10:636–641
92.
93.
Zurück zum Zitat Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20(2):82–86. doi:10.1016/S0141-0229(96)00087-7 CrossRef Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20(2):82–86. doi:10.​1016/​S0141-0229(96)00087-7 CrossRef
94.
Zurück zum Zitat Homann T, Tag C, Biebl H, Deckwer W-D, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33(2). doi:10.1007/bf00176511 Homann T, Tag C, Biebl H, Deckwer W-D, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33(2). doi:10.​1007/​bf00176511
95.
Zurück zum Zitat Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crop Prod 7(2–3):281–289. doi:10.1016/s0926-6690(97)00059-9 CrossRef Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crop Prod 7(2–3):281–289. doi:10.​1016/​s0926-6690(97)00059-9 CrossRef
96.
Zurück zum Zitat Biebl H, Marten S, Hippe H, Deckwer W-D (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol 36(5). doi:10.1007/bf00183234 Biebl H, Marten S, Hippe H, Deckwer W-D (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol 36(5). doi:10.​1007/​bf00183234
100.
101.
Zurück zum Zitat EC (2000) Directive 2000/54/ec of the European parliament and of the council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work EC (2000) Directive 2000/54/ec of the European parliament and of the council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work
102.
Zurück zum Zitat Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459CrossRefPubMed Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459CrossRefPubMed
103.
104.
Zurück zum Zitat Rose DA (2015) DuPont Tate & Lyle Bio Products Announces Winners of Zemea® Innovation Awards PRWeb Rose DA (2015) DuPont Tate & Lyle Bio Products Announces Winners of Zemea® Innovation Awards PRWeb
106.
Zurück zum Zitat Xu J, Saunders CW, Green PR, Velasquez JE, Guffey TB (2013) Microorganisms and methods for producing acrylate and other products from homoserine. WO 2013/052727 A3 Xu J, Saunders CW, Green PR, Velasquez JE, Guffey TB (2013) Microorganisms and methods for producing acrylate and other products from homoserine. WO 2013/052727 A3
107.
Zurück zum Zitat Boisart C (2013) Method for the preparation of 1,3-propanediol. EP 2540834 A1 Boisart C (2013) Method for the preparation of 1,3-propanediol. EP 2540834 A1
108.
Zurück zum Zitat Soucaille P, Boisart C (2014) Method for the preparation of 1,3-propanediol from sucrose. US 8900838 B2 Soucaille P, Boisart C (2014) Method for the preparation of 1,3-propanediol from sucrose. US 8900838 B2
109.
Zurück zum Zitat Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285. doi:10.1007/s10529-007-9398-2 CrossRefPubMed Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285. doi:10.​1007/​s10529-007-9398-2 CrossRefPubMed
110.
Zurück zum Zitat Jun SA, Moon C, Kang CH, Kong SW, Sang BI, Um Y (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161(1–8):491–501. doi:10.1007/s12010-009-8839-x CrossRefPubMed Jun SA, Moon C, Kang CH, Kong SW, Sang BI, Um Y (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161(1–8):491–501. doi:10.​1007/​s12010-009-8839-x CrossRefPubMed
112.
Zurück zum Zitat Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Volkenrode 55:261–267 Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Volkenrode 55:261–267
113.
Zurück zum Zitat Bock R (2004) Biokonversion von Glycerin zu 1,3-Propandiol mit freien und immobilisierten Mikroorganismen. Dissertation, TU Braunschweig Bock R (2004) Biokonversion von Glycerin zu 1,3-Propandiol mit freien und immobilisierten Mikroorganismen. Dissertation, TU Braunschweig
114.
Zurück zum Zitat Tang XM, Tan YS, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75(6):1628–1634CrossRefPubMedPubMedCentral Tang XM, Tan YS, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75(6):1628–1634CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Scalbert J, Thibault-Starzyk F, Jacquot R, Morvan D, Meunier F (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? J Catal 311:28–32. doi:10.1016/j.jcat.2013.11.004 CrossRef Scalbert J, Thibault-Starzyk F, Jacquot R, Morvan D, Meunier F (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? J Catal 311:28–32. doi:10.​1016/​j.​jcat.​2013.​11.​004 CrossRef
126.
Zurück zum Zitat Marcu I-C, Tanchoux N, Fajula F, Tichit D (2012) Catalytic conversion of ethanol into butanol over M–Mg–Al mixed oxide catalysts (M=Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143(1):23–30. doi:10.1007/s10562-012-0935-9 CrossRef Marcu I-C, Tanchoux N, Fajula F, Tichit D (2012) Catalytic conversion of ethanol into butanol over M–Mg–Al mixed oxide catalysts (M=Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143(1):23–30. doi:10.​1007/​s10562-012-0935-9 CrossRef
128.
Zurück zum Zitat Arjona AR, Yague JLS, Canos AC, Domine ME (2014) Catalyst for obtaining higher alcohols. WO 2014001595 A1 Arjona AR, Yague JLS, Canos AC, Domine ME (2014) Catalyst for obtaining higher alcohols. WO 2014001595 A1
130.
131.
Zurück zum Zitat Zhang C (2014) Catalyst and processes for producing butanol. US 2014/0179958 A1 Zhang C (2014) Catalyst and processes for producing butanol. US 2014/0179958 A1
132.
Zurück zum Zitat Riittonen T, Eränen K, Mäki-Arvela P, Shchukarev A, Rautio A-R, Kordas K, Kumar N, Salmi T, Mikkola J-P (2015) Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renew Energy 74:369–378. doi:10.1016/j.renene.2014.08.052 CrossRef Riittonen T, Eränen K, Mäki-Arvela P, Shchukarev A, Rautio A-R, Kordas K, Kumar N, Salmi T, Mikkola J-P (2015) Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renew Energy 74:369–378. doi:10.​1016/​j.​renene.​2014.​08.​052 CrossRef
133.
Zurück zum Zitat Ghaziaskar HS, Xu C (2013) One-step continuous process for the production of 1-butanol and 1-hexanol by catalytic conversion of bio-ethanol at its sub−/supercritical state. RSC Adv 3(13):4271. doi:10.1039/c3ra00134b CrossRef Ghaziaskar HS, Xu C (2013) One-step continuous process for the production of 1-butanol and 1-hexanol by catalytic conversion of bio-ethanol at its sub−/supercritical state. RSC Adv 3(13):4271. doi:10.​1039/​c3ra00134b CrossRef
134.
Zurück zum Zitat Dowson GR, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. Angew Chem 52(34):9005–9008. doi:10.1002/anie.201303723 CrossRef Dowson GR, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. Angew Chem 52(34):9005–9008. doi:10.​1002/​anie.​201303723 CrossRef
136.
Zurück zum Zitat Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666 Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666
137.
143.
Zurück zum Zitat Koepke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092. doi:10.1073/pnas.1004716107 CrossRef Koepke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092. doi:10.​1073/​pnas.​1004716107 CrossRef
145.
Zurück zum Zitat Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311CrossRefPubMed Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311CrossRefPubMed
146.
Zurück zum Zitat Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352. doi:10.1016/j.ymben.2011.02.004 CrossRefPubMed Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352. doi:10.​1016/​j.​ymben.​2011.​02.​004 CrossRefPubMed
147.
Zurück zum Zitat Gak E, Tyurin M, Kiriukhin M (2014) Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. J Ind Microbiol Biotechnol 41(5):763–781. doi:10.1007/s10295-014-1416-5 CrossRefPubMed Gak E, Tyurin M, Kiriukhin M (2014) Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. J Ind Microbiol Biotechnol 41(5):763–781. doi:10.​1007/​s10295-014-1416-5 CrossRefPubMed
148.
Zurück zum Zitat Kolodziej R, Scheib J (2014) Bio-based isobutanol – a versatile, viable next generation biofuel. Digital Refining Kolodziej R, Scheib J (2014) Bio-based isobutanol – a versatile, viable next generation biofuel. Digital Refining
149.
Zurück zum Zitat Buelter T, Meinhold P, Feldmann RMR, Hawkins AC, Urano J, Bastian S, Arnold F (2012) Engineered microorganisms capable of producing target compounds under anaerobic conditions. US 8097440 B1 Buelter T, Meinhold P, Feldmann RMR, Hawkins AC, Urano J, Bastian S, Arnold F (2012) Engineered microorganisms capable of producing target compounds under anaerobic conditions. US 8097440 B1
150.
Zurück zum Zitat Feldmann RMR, Gunawardena U, Urano J, Meinhold P, Aristidou A, Dundon CA, Smith C (2013) Yeast organism producing isobutanol at a high yield. US 8455239 B2 Feldmann RMR, Gunawardena U, Urano J, Meinhold P, Aristidou A, Dundon CA, Smith C (2013) Yeast organism producing isobutanol at a high yield. US 8455239 B2
151.
Zurück zum Zitat Bhalla R, Doig SD, Konde KS, Patil VSN, Patnaik R (2014) Process for maximizing biomass growth and butanol yield by feedback control. WO 2014151645 A1 Bhalla R, Doig SD, Konde KS, Patil VSN, Patnaik R (2014) Process for maximizing biomass growth and butanol yield by feedback control. WO 2014151645 A1
157.
Zurück zum Zitat Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, pp 261–288CrossRef Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, pp 261–288CrossRef
159.
Zurück zum Zitat Gräfje H, Körnig W, Weitz H-M, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2000) Butanediols, butenediol, and butynediol. Ullmann’s Encyclopedia of Industrial Chemistry doi:10.1002/14356007.a04_455 Gräfje H, Körnig W, Weitz H-M, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2000) Butanediols, butenediol, and butynediol. Ullmann’s Encyclopedia of Industrial Chemistry doi:10.1002/14356007.a04_455
163.
Zurück zum Zitat Harden A, Walpole GS (1906) Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2, 3-butyleneglycol and acetylmethylcarbinol. Proc Royal Soc B Bio 77(519):399–405. doi:10.1098/rspb.1906.0028 CrossRef Harden A, Walpole GS (1906) Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2, 3-butyleneglycol and acetylmethylcarbinol. Proc Royal Soc B Bio 77(519):399–405. doi:10.​1098/​rspb.​1906.​0028 CrossRef
166.
Zurück zum Zitat Behr A, Dittmeyer R, Keim W, Kreysa G, Oberholz AE (2005) Aliphatische Zwischenprodukte. Winnacker – Küchler: Chemische Technik, Prozesse und Produkte: Organische Zwischenverbindungen, Polymere. Wiley-VCH Behr A, Dittmeyer R, Keim W, Kreysa G, Oberholz AE (2005) Aliphatische Zwischenprodukte. Winnacker – Küchler: Chemische Technik, Prozesse und Produkte: Organische Zwischenverbindungen, Polymere. Wiley-VCH
167.
Zurück zum Zitat Myszkowski J, Zielinski AZ (1965) Synthèse de la butylène-chlorhydrine et sa conversion en méthyléthylcétone, oxyde de butylène et butylène-glycol. Chimie et industrie 93(3) Myszkowski J, Zielinski AZ (1965) Synthèse de la butylène-chlorhydrine et sa conversion en méthyléthylcétone, oxyde de butylène et butylène-glycol. Chimie et industrie 93(3)
168.
Zurück zum Zitat Weissermel K, Arpe H-J (1998) Spezielle Herstellungsverfahren für Olefine. Wiley-VCH, Weinheim, pp 70–99 Weissermel K, Arpe H-J (1998) Spezielle Herstellungsverfahren für Olefine. Wiley-VCH, Weinheim, pp 70–99
169.
Zurück zum Zitat Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85(6):1751–1758. doi:10.1007/s00253-009-2222-2 CrossRefPubMed Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85(6):1751–1758. doi:10.​1007/​s00253-009-2222-2 CrossRefPubMed
171.
Zurück zum Zitat Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109(7):1610–1621. doi:10.1002/bit.24427 CrossRefPubMed Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109(7):1610–1621. doi:10.​1002/​bit.​24427 CrossRefPubMed
172.
Zurück zum Zitat Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7(1):44. doi:10.1186/1754-6834-7-44 CrossRefPubMedPubMedCentral Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7(1):44. doi:10.​1186/​1754-6834-7-44 CrossRefPubMedPubMedCentral
178.
Zurück zum Zitat Zhang L, Sun J, Hao Y, Zhu J, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37(8):857–862. doi:10.1007/s10295-010-0733-6 CrossRefPubMed Zhang L, Sun J, Hao Y, Zhu J, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37(8):857–862. doi:10.​1007/​s10295-010-0733-6 CrossRefPubMed
180.
Zurück zum Zitat Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97(15):6715–6723. doi:10.1007/s00253-013-4981-z CrossRefPubMed Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97(15):6715–6723. doi:10.​1007/​s00253-013-4981-z CrossRefPubMed
182.
183.
Zurück zum Zitat Rojas Martinez AM, Segarra Manzano S, Montesinos Paes A, Tortajada Serra M, Ramon Vidal D, Santos Mazorra VE, Ladero Gallan M, Garcia-Ochoa Soria F, Ripoll Morales V (2014) Method for producing 2,3-butanediol using improved strains of Raoultella planticola. WO 2014013330 A2 Rojas Martinez AM, Segarra Manzano S, Montesinos Paes A, Tortajada Serra M, Ramon Vidal D, Santos Mazorra VE, Ladero Gallan M, Garcia-Ochoa Soria F, Ripoll Morales V (2014) Method for producing 2,3-butanediol using improved strains of Raoultella planticola. WO 2014013330 A2
185.
Zurück zum Zitat Jiang L-Q, Fang Z, Zhao Z-l, He F, Li H-b (2015) 2,3-Butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa. BioResources 10(1). doi:10.15376/biores.10.1.1318-1329 Jiang L-Q, Fang Z, Zhao Z-l, He F, Li H-b (2015) 2,3-Butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa. BioResources 10(1). doi:10.​15376/​biores.​10.​1.​1318-1329
186.
Zurück zum Zitat Koepke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80(11):3394–3403. doi:10.1128/AEM.00301-14 CrossRef Koepke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80(11):3394–3403. doi:10.​1128/​AEM.​00301-14 CrossRef
187.
Zurück zum Zitat Koepke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475. doi:10.1128/AEM.00355-11 CrossRef Koepke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475. doi:10.​1128/​AEM.​00355-11 CrossRef
190.
Zurück zum Zitat Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chemical Weekly, pp 205–211 Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chemical Weekly, pp 205–211
191.
Zurück zum Zitat Tan JPM, Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW (2014) Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind Eng Chem Res 53(42):16123–16134. doi:10.1021/ie502178j CrossRef Tan JPM, Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW (2014) Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind Eng Chem Res 53(42):16123–16134. doi:10.​1021/​ie502178j CrossRef
192.
Zurück zum Zitat Delhomme C, Weuster-Botz D, Kuehn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical – a review of the catalytic possibilities in aqueous media. Green Chem 11(1):13–26. doi:10.1039/b810684c CrossRef Delhomme C, Weuster-Botz D, Kuehn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical – a review of the catalytic possibilities in aqueous media. Green Chem 11(1):13–26. doi:10.​1039/​b810684c CrossRef
193.
Zurück zum Zitat Plot P (2012) BioAmber produces biobased 1,4-butanediol from biosuccinic acid Plot P (2012) BioAmber produces biobased 1,4-butanediol from biosuccinic acid
194.
Zurück zum Zitat Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31(5):647–654. doi:10.1002/ceat.200800063 CrossRef Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31(5):647–654. doi:10.​1002/​ceat.​200800063 CrossRef
195.
Zurück zum Zitat Rao VNM (1988) Process for preparing butyrolactones and butanediols. US 4782167 A Rao VNM (1988) Process for preparing butyrolactones and butanediols. US 4782167 A
196.
Zurück zum Zitat Bhattacharyya A, Manila MD (2006) Catalysts for maleic acid hydrogenation to 1,4-butanediol. US 20060004212 A1 Bhattacharyya A, Manila MD (2006) Catalysts for maleic acid hydrogenation to 1,4-butanediol. US 20060004212 A1
197.
Zurück zum Zitat Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112(1333):30–35 Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112(1333):30–35
198.
Zurück zum Zitat Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2 Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2
200.
Zurück zum Zitat Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chemische Technik – Prozesse und Produkte, vol 5. Wiley-VCH, Weinheim, pp 55–68 Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chemische Technik – Prozesse und Produkte, vol 5. Wiley-VCH, Weinheim, pp 55–68
201.
Zurück zum Zitat Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci Technol Revue de l'IFP 64(6):649–667. doi:10.2516/ogst/2009027 CrossRef Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci Technol Revue de l'IFP 64(6):649–667. doi:10.​2516/​ogst/​2009027 CrossRef
205.
211.
Zurück zum Zitat Bruggeman JP, Bettinger CJ, Langer R (2010) Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. J Biomed Mater Res Part A 95A(1):92–104. doi:10.1002/jbm.a.32733 CrossRef Bruggeman JP, Bettinger CJ, Langer R (2010) Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. J Biomed Mater Res Part A 95A(1):92–104. doi:10.​1002/​jbm.​a.​32733 CrossRef
212.
Zurück zum Zitat Granstroem TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276. doi:10.1007/s00253-006-0760-4 CrossRef Granstroem TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276. doi:10.​1007/​s00253-006-0760-4 CrossRef
213.
Zurück zum Zitat Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3(1):8–36 Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3(1):8–36
214.
Zurück zum Zitat Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6(7):834–844CrossRefPubMedPubMedCentral Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6(7):834–844CrossRefPubMedPubMedCentral
215.
216.
219.
Zurück zum Zitat Thomas S, Head WA, Cameron CA (2007) A process for producing erythritol. WO 2007005299 A1 Thomas S, Head WA, Cameron CA (2007) A process for producing erythritol. WO 2007005299 A1
220.
Zurück zum Zitat Edlauer R, Trimmel S (2012) Process for producing erythritol using moniliella tomentosa strains in the presence of neutral inorganic nitrates, such as potassium nitrate, ammonium nitrate or sodium nitrate, as nitrogen source. US 8187847 B2 Edlauer R, Trimmel S (2012) Process for producing erythritol using moniliella tomentosa strains in the presence of neutral inorganic nitrates, such as potassium nitrate, ammonium nitrate or sodium nitrate, as nitrogen source. US 8187847 B2
Metadaten
Titel
Products Components: Alcohols
verfasst von
Henning Kuhz
Anja Kuenz
Ulf Prüße
Thomas Willke
Klaus-Dieter Vorlop
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/10_2016_74

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.