Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 5/2019

12.12.2017 | Original Article

Projective synchronization for two nonidentical time-delayed fractional-order T–S fuzzy neural networks based on mixed \({H_\infty }\)/passive adaptive sliding mode control

verfasst von: Shuai Song, Xiaona Song, Ines Tejado

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the problem of mixed \({H_\infty }\)/passive projective synchronization for two different fractional-order (FO) T–S fuzzy neural networks with uncertain parameters and time delays. Firstly, a fractional integral sliding surface which is suitable for the considered FO error system is proposed. Second, in terms of the established sliding surface, combining a novel reaching law, a new adaptive sliding mode control law is introduced, which can force the closed-loop dynamic error system trajectories to reach the sliding surface. Then, by giving a continuous frequency distributed model of the FO dynamic networks and the application of FO system stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequality techniques. Based on the conditions, a desired controller which can guarantee the robust stability of the closed-loop system and also ensure a mixed \({H_\infty }\)/passive performance level is designed. Finally, synchronization of two nonidentical time-delayed FO T–S fuzzy neural networks with uncertain parameters as a simulation example is given to illustrate the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
3.
Zurück zum Zitat Chen H, Wu L, Dou Q et al (2017) Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 47(6):1576–1586CrossRef Chen H, Wu L, Dou Q et al (2017) Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 47(6):1576–1586CrossRef
4.
Zurück zum Zitat Tong C, Li J, Zhu F (2017) A convolutional neural network based method for event classification in event-driven multi-sensor network. Comput Electr Eng 60:90–99CrossRef Tong C, Li J, Zhu F (2017) A convolutional neural network based method for event classification in event-driven multi-sensor network. Comput Electr Eng 60:90–99CrossRef
5.
Zurück zum Zitat Yang X, Feng Z, Feng J et al (2017) Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw 85:157–164CrossRef Yang X, Feng Z, Feng J et al (2017) Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw 85:157–164CrossRef
6.
Zurück zum Zitat Xu S, Lam J (2006) A new approach to exponential stability analysis of neural networks with time-varying delays. Neural Netw 19(1):76–83MATHCrossRef Xu S, Lam J (2006) A new approach to exponential stability analysis of neural networks with time-varying delays. Neural Netw 19(1):76–83MATHCrossRef
7.
Zurück zum Zitat Wang Z, Liu Y, Li M et al (2006) Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 17(3):814–820CrossRef Wang Z, Liu Y, Li M et al (2006) Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 17(3):814–820CrossRef
8.
Zurück zum Zitat Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97MathSciNetMATHCrossRef Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97MathSciNetMATHCrossRef
9.
Zurück zum Zitat Zhang B, Lam J, Xu S (2015) Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals. IEEE Trans Neural Netw Learn Syst 26(7):1480–1492MathSciNetCrossRef Zhang B, Lam J, Xu S (2015) Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals. IEEE Trans Neural Netw Learn Syst 26(7):1480–1492MathSciNetCrossRef
10.
Zurück zum Zitat Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109MATHCrossRef Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109MATHCrossRef
11.
Zurück zum Zitat Wang F, Yang Y, Hu M (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244CrossRef Wang F, Yang Y, Hu M (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244CrossRef
12.
Zurück zum Zitat Wu R, Hei X, Chen L (2013) Finite-time stability of fractional-order neural networks with delay. Commun Theor Phys 60(2):189–193MathSciNetMATHCrossRef Wu R, Hei X, Chen L (2013) Finite-time stability of fractional-order neural networks with delay. Commun Theor Phys 60(2):189–193MathSciNetMATHCrossRef
13.
Zurück zum Zitat Yang X, Song Q, Liu Y et al (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26CrossRef Yang X, Song Q, Liu Y et al (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26CrossRef
14.
Zurück zum Zitat Yang X, Li C, Song Q et al (2016) Mittag–Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing 207:276–286CrossRef Yang X, Li C, Song Q et al (2016) Mittag–Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing 207:276–286CrossRef
15.
Zurück zum Zitat Chen J, Zeng Z, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8MATHCrossRef Chen J, Zeng Z, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8MATHCrossRef
16.
Zurück zum Zitat Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensioned chaotic systems. Phys Rev Lett 82:3042–3045CrossRef Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensioned chaotic systems. Phys Rev Lett 82:3042–3045CrossRef
17.
Zurück zum Zitat Jia Q (2007) Projective synchronization of a new hyperchaotic Lorenz system. Phys Lett A 370:40–45MATHCrossRef Jia Q (2007) Projective synchronization of a new hyperchaotic Lorenz system. Phys Lett A 370:40–45MATHCrossRef
18.
19.
Zurück zum Zitat Agrawal SK, Srivastava M, Das S (2012) Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45(6):737–752CrossRef Agrawal SK, Srivastava M, Das S (2012) Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45(6):737–752CrossRef
20.
Zurück zum Zitat Wang X, Zhang X, Ma C (2012) Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn 69(1–2):511–517MathSciNetMATHCrossRef Wang X, Zhang X, Ma C (2012) Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn 69(1–2):511–517MathSciNetMATHCrossRef
21.
Zurück zum Zitat Andrew LYT, Li XF, Chu YD et al (2015) A novel adaptive-impulsive synchronization of fractional-order chaotic systems. Chin Phys B 24(10):86–92CrossRef Andrew LYT, Li XF, Chu YD et al (2015) A novel adaptive-impulsive synchronization of fractional-order chaotic systems. Chin Phys B 24(10):86–92CrossRef
22.
Zurück zum Zitat Ding L (2009) Projective synchronization of fractional-order chaotic systems based on sliding mode control. Acta Phys Sin 58(6):3747–3752MathSciNetMATH Ding L (2009) Projective synchronization of fractional-order chaotic systems based on sliding mode control. Acta Phys Sin 58(6):3747–3752MathSciNetMATH
23.
Zurück zum Zitat Bai J, Yu Y, Wang S et al (2012) Modified projective synchronization of uncertain fractional order hyperchaotic systems. Commun Nonlinear Sci Numer Simul 17(4):1921–1928MathSciNetMATHCrossRef Bai J, Yu Y, Wang S et al (2012) Modified projective synchronization of uncertain fractional order hyperchaotic systems. Commun Nonlinear Sci Numer Simul 17(4):1921–1928MathSciNetMATHCrossRef
24.
Zurück zum Zitat Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal Real World Appl 12(2):811–816MathSciNetMATHCrossRef Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal Real World Appl 12(2):811–816MathSciNetMATHCrossRef
25.
Zurück zum Zitat Yang YH, Xiao J, Ma ZZ (2013) Modified function projective synchronization for a class of partially linear fractional order chaotic systems. Acta Phys Sin 62(18):116–121 Yang YH, Xiao J, Ma ZZ (2013) Modified function projective synchronization for a class of partially linear fractional order chaotic systems. Acta Phys Sin 62(18):116–121
26.
Zurück zum Zitat Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9MATHCrossRef Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9MATHCrossRef
27.
Zurück zum Zitat Yu J, Hu C, Jiang H et al (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95MATHCrossRef Yu J, Hu C, Jiang H et al (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95MATHCrossRef
28.
Zurück zum Zitat Velmurugan G, Rakkiyappan R (2015) Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn 11(3):1–14MATH Velmurugan G, Rakkiyappan R (2015) Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn 11(3):1–14MATH
29.
Zurück zum Zitat Song X, Liu L, Balsera IT et al (2016) Output feedback control for fractional-order Takagi–Sugeno fuzzy systems with unmeasurable premise variables. Trans Inst Meas Control 38(10):1201–1211CrossRef Song X, Liu L, Balsera IT et al (2016) Output feedback control for fractional-order Takagi–Sugeno fuzzy systems with unmeasurable premise variables. Trans Inst Meas Control 38(10):1201–1211CrossRef
30.
Zurück zum Zitat Song X, Xu S, Shen H (2008) Robust control for uncertain fuzzy systems with distributed delays via output feedback controllers. Inf Sci 178(22):4341–4356MathSciNetMATHCrossRef Song X, Xu S, Shen H (2008) Robust control for uncertain fuzzy systems with distributed delays via output feedback controllers. Inf Sci 178(22):4341–4356MathSciNetMATHCrossRef
31.
Zurück zum Zitat Li Y, Li J (2015) Decentralized stabilization of fractional order T–S fuzzy interconnected systems with multiple time delays. J Intell Fuzzy Syst 30:319–331MATHCrossRef Li Y, Li J (2015) Decentralized stabilization of fractional order T–S fuzzy interconnected systems with multiple time delays. J Intell Fuzzy Syst 30:319–331MATHCrossRef
32.
Zurück zum Zitat Yucel E, Ali MS, Gunasekaran N et al (2016) Sampled-data filtering of Takagi–Sugeno fuzzy neural networks with interval time-varying delays. Fuzzy Sets Syst 316:69–81MathSciNetMATHCrossRef Yucel E, Ali MS, Gunasekaran N et al (2016) Sampled-data filtering of Takagi–Sugeno fuzzy neural networks with interval time-varying delays. Fuzzy Sets Syst 316:69–81MathSciNetMATHCrossRef
33.
Zurück zum Zitat Shi P, Zhang Y, Chadli M et al (2016) Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909MathSciNetCrossRef Shi P, Zhang Y, Chadli M et al (2016) Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909MathSciNetCrossRef
34.
Zurück zum Zitat Choi HD, Ahn CK, Shi P et al (2015) Filtering for Takagi-Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153:117–125CrossRef Choi HD, Ahn CK, Shi P et al (2015) Filtering for Takagi-Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153:117–125CrossRef
35.
Zurück zum Zitat Song S, Song X, Balsera IT (2017) Adaptive projective synchronization for fractional-order T–S fuzzy neural networks with time-delay and uncertain parameters. Optik 129:140–152CrossRef Song S, Song X, Balsera IT (2017) Adaptive projective synchronization for fractional-order T–S fuzzy neural networks with time-delay and uncertain parameters. Optik 129:140–152CrossRef
36.
Zurück zum Zitat Wu L, Su X, Shi P (2012) Sliding mode control with bounded ℒ2 gain performance of Markovian jump singular time-delay systems. Automatica 48(8):1929–1933MathSciNetMATHCrossRef Wu L, Su X, Shi P (2012) Sliding mode control with bounded ℒ2 gain performance of Markovian jump singular time-delay systems. Automatica 48(8):1929–1933MathSciNetMATHCrossRef
37.
Zurück zum Zitat Niu Y, Wang X (2009) Sliding mode control design for uncertain delay systems with partial actuator degradation. Int J Syst Sci 40(4):403–409MathSciNetMATHCrossRef Niu Y, Wang X (2009) Sliding mode control design for uncertain delay systems with partial actuator degradation. Int J Syst Sci 40(4):403–409MathSciNetMATHCrossRef
38.
Zurück zum Zitat Lin TC, Lee TY (2011) Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans Fuzzy Syst 19(4):623–635CrossRef Lin TC, Lee TY (2011) Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans Fuzzy Syst 19(4):623–635CrossRef
39.
Zurück zum Zitat Lin TC, Lee TY, Balas VE (2011) Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos Solitons Fractals 44(10):791–801MATHCrossRef Lin TC, Lee TY, Balas VE (2011) Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos Solitons Fractals 44(10):791–801MATHCrossRef
40.
Zurück zum Zitat Shen H, Xu S, Lu J et al (2012) Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays. J Franklin Inst 349(5):1665–1680MathSciNetMATHCrossRef Shen H, Xu S, Lu J et al (2012) Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays. J Franklin Inst 349(5):1665–1680MathSciNetMATHCrossRef
41.
Zurück zum Zitat Gao H, Chen T, Chai T (2007) Passivity and passification for networked control systems. SIAM J Control Optim 46(4):1299–1322MathSciNetMATHCrossRef Gao H, Chen T, Chai T (2007) Passivity and passification for networked control systems. SIAM J Control Optim 46(4):1299–1322MathSciNetMATHCrossRef
42.
Zurück zum Zitat Kuntanapreeda S (2016) Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. Nonlinear Dyn 84(4):2505–2515MathSciNetMATHCrossRef Kuntanapreeda S (2016) Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. Nonlinear Dyn 84(4):2505–2515MathSciNetMATHCrossRef
43.
Zurück zum Zitat Xu S, Chen T, Lam J (2003) Robust filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48(5):900–907MathSciNetMATHCrossRef Xu S, Chen T, Lam J (2003) Robust filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48(5):900–907MathSciNetMATHCrossRef
44.
46.
Zurück zum Zitat Mathiyalagan K, Park JH, Sakthivel R et al (2014) Robust mixed and passive filtering for networked Markov jump systems with impulses. Sig Process 101:162–173CrossRef Mathiyalagan K, Park JH, Sakthivel R et al (2014) Robust mixed and passive filtering for networked Markov jump systems with impulses. Sig Process 101:162–173CrossRef
47.
Zurück zum Zitat Shen H, Wu ZG, Park JH (2015) Reliable mixed passive and filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int J Robust Nonlinear Control 25(17):3231–3251MathSciNetMATHCrossRef Shen H, Wu ZG, Park JH (2015) Reliable mixed passive and filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int J Robust Nonlinear Control 25(17):3231–3251MathSciNetMATHCrossRef
48.
Zurück zum Zitat Su L, Shen H (2015) Mixed /passive synchronization for complex dynamical networks with sampled-data control. Appl Math Comput 259:931–942MathSciNetMATH Su L, Shen H (2015) Mixed /passive synchronization for complex dynamical networks with sampled-data control. Appl Math Comput 259:931–942MathSciNetMATH
49.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
50.
Zurück zum Zitat Xie L, de Souza Carlos E (1992) Robust control for linear systems with norm-bounded time-varying uncertainty. IEEE Trans Autom Control 37(8):1188–1191MathSciNetMATHCrossRef Xie L, de Souza Carlos E (1992) Robust control for linear systems with norm-bounded time-varying uncertainty. IEEE Trans Autom Control 37(8):1188–1191MathSciNetMATHCrossRef
51.
Zurück zum Zitat Gai M, Cui S, Liang S et al (2016) Frequency distributed model of Caputo derivatives and robust stability of a class of multi-variable fractional-order neural networks with uncertainties. Neurocomputing 202:91–97CrossRef Gai M, Cui S, Liang S et al (2016) Frequency distributed model of Caputo derivatives and robust stability of a class of multi-variable fractional-order neural networks with uncertainties. Neurocomputing 202:91–97CrossRef
52.
Zurück zum Zitat Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105CrossRef Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105CrossRef
53.
Zurück zum Zitat Wu H, Wang L, Wang Y et al (2016) Global Mittag-Leffler projective synchronization for fractional-order neural networks: an LMI-based approach. Adv Differ Equ 132:1–18MathSciNetMATH Wu H, Wang L, Wang Y et al (2016) Global Mittag-Leffler projective synchronization for fractional-order neural networks: an LMI-based approach. Adv Differ Equ 132:1–18MathSciNetMATH
54.
Zurück zum Zitat Mazandarani M, Kamyad AV (2013) Modified fractional Euler method for solving Fuzzy fractional initial value problem. Commun Nonlinear Sci Numer Simul 18(1):12–21MathSciNetMATHCrossRef Mazandarani M, Kamyad AV (2013) Modified fractional Euler method for solving Fuzzy fractional initial value problem. Commun Nonlinear Sci Numer Simul 18(1):12–21MathSciNetMATHCrossRef
55.
Zurück zum Zitat Mazandarani M, Najariyan M (2014) Type-2 fuzzy fractional derivatives. Commun Nonlinear Sci Numer Simul 19(7):2354–2372MathSciNetCrossRef Mazandarani M, Najariyan M (2014) Type-2 fuzzy fractional derivatives. Commun Nonlinear Sci Numer Simul 19(7):2354–2372MathSciNetCrossRef
Metadaten
Titel
Projective synchronization for two nonidentical time-delayed fractional-order T–S fuzzy neural networks based on mixed /passive adaptive sliding mode control
verfasst von
Shuai Song
Xiaona Song
Ines Tejado
Publikationsdatum
12.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 5/2019
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-017-0761-x

Weitere Artikel der Ausgabe 5/2019

International Journal of Machine Learning and Cybernetics 5/2019 Zur Ausgabe

Neuer Inhalt